Update services.py
Browse files- services.py +22 -67
services.py
CHANGED
|
@@ -1,22 +1,11 @@
|
|
| 1 |
# /services.py
|
|
|
|
| 2 |
|
| 3 |
-
"""
|
| 4 |
-
Manages interactions with external services like LLM providers and web search APIs.
|
| 5 |
-
This module has been refactored to support multiple LLM providers:
|
| 6 |
-
- Hugging Face
|
| 7 |
-
- Groq
|
| 8 |
-
- Fireworks AI
|
| 9 |
-
- OpenAI
|
| 10 |
-
- Google Gemini
|
| 11 |
-
- DeepSeek (Direct API via OpenAI client)
|
| 12 |
-
"""
|
| 13 |
import os
|
| 14 |
import logging
|
| 15 |
from typing import Dict, Any, Generator, List
|
| 16 |
|
| 17 |
from dotenv import load_dotenv
|
| 18 |
-
|
| 19 |
-
# Import all necessary clients
|
| 20 |
from huggingface_hub import InferenceClient
|
| 21 |
from tavily import TavilyClient
|
| 22 |
from groq import Groq
|
|
@@ -24,9 +13,6 @@ import fireworks.client as Fireworks
|
|
| 24 |
import openai
|
| 25 |
import google.generativeai as genai
|
| 26 |
|
| 27 |
-
# <--- FIX: REMOVED the incorrect 'from deepseek import ...' line ---
|
| 28 |
-
|
| 29 |
-
# --- Setup Logging & Environment ---
|
| 30 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 31 |
load_dotenv()
|
| 32 |
|
|
@@ -39,24 +25,17 @@ OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
|
| 39 |
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
|
| 40 |
DEEPSEEK_API_KEY = os.getenv("DEEPSEEK_API_KEY")
|
| 41 |
|
| 42 |
-
# --- Type Definitions ---
|
| 43 |
Messages = List[Dict[str, Any]]
|
| 44 |
|
| 45 |
class LLMService:
|
| 46 |
"""A multi-provider wrapper for LLM Inference APIs."""
|
| 47 |
-
|
| 48 |
def __init__(self):
|
| 49 |
-
# Initialize clients only if their API keys are available
|
| 50 |
self.hf_client = InferenceClient(token=HF_TOKEN) if HF_TOKEN else None
|
| 51 |
self.groq_client = Groq(api_key=GROQ_API_KEY) if GROQ_API_KEY else None
|
| 52 |
self.openai_client = openai.OpenAI(api_key=OPENAI_API_KEY) if OPENAI_API_KEY else None
|
| 53 |
|
| 54 |
-
# <--- FIX: Correctly instantiate the DeepSeek client using the OpenAI library ---
|
| 55 |
if DEEPSEEK_API_KEY:
|
| 56 |
-
self.deepseek_client = openai.OpenAI(
|
| 57 |
-
api_key=DEEPSEEK_API_KEY,
|
| 58 |
-
base_url="https://api.deepseek.com/v1"
|
| 59 |
-
)
|
| 60 |
else:
|
| 61 |
self.deepseek_client = None
|
| 62 |
|
|
@@ -73,84 +52,60 @@ class LLMService:
|
|
| 73 |
self.gemini_model = None
|
| 74 |
|
| 75 |
def _prepare_messages_for_gemini(self, messages: Messages) -> List[Dict[str, Any]]:
|
| 76 |
-
# This function remains the same
|
| 77 |
gemini_messages = []
|
| 78 |
for msg in messages:
|
|
|
|
| 79 |
role = 'model' if msg['role'] == 'assistant' else 'user'
|
| 80 |
gemini_messages.append({'role': role, 'parts': [msg['content']]})
|
| 81 |
return gemini_messages
|
| 82 |
|
| 83 |
-
def generate_code_stream(
|
| 84 |
-
self, model_id: str, messages: Messages, max_tokens: int = 8192
|
| 85 |
-
) -> Generator[str, None, None]:
|
| 86 |
-
# This function remains the same, as the dispatcher logic is already correct
|
| 87 |
provider, model_name = model_id.split('/', 1)
|
| 88 |
logging.info(f"Dispatching to provider: {provider} for model: {model_name}")
|
| 89 |
|
| 90 |
try:
|
| 91 |
if provider in ['openai', 'groq', 'deepseek', 'fireworks']:
|
| 92 |
-
client_map = {
|
| 93 |
-
'openai': self.openai_client,
|
| 94 |
-
'groq': self.groq_client,
|
| 95 |
-
'deepseek': self.deepseek_client,
|
| 96 |
-
'fireworks': self.fireworks_client.ChatCompletion if self.fireworks_client else None,
|
| 97 |
-
}
|
| 98 |
client = client_map.get(provider)
|
| 99 |
-
if not client:
|
| 100 |
-
raise ValueError(f"{provider.capitalize()} API key not configured.")
|
| 101 |
-
|
| 102 |
-
if provider == 'fireworks':
|
| 103 |
-
stream = client.create(model=model_name, messages=messages, stream=True, max_tokens=max_tokens)
|
| 104 |
-
else:
|
| 105 |
-
stream = client.chat.completions.create(model=model_name, messages=messages, stream=True, max_tokens=max_tokens)
|
| 106 |
|
|
|
|
| 107 |
for chunk in stream:
|
| 108 |
-
if chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.content:
|
| 109 |
-
|
| 110 |
-
|
| 111 |
elif provider == 'gemini':
|
| 112 |
-
if not self.gemini_model:
|
| 113 |
-
|
| 114 |
gemini_messages = self._prepare_messages_for_gemini(messages)
|
|
|
|
|
|
|
|
|
|
| 115 |
stream = self.gemini_model.generate_content(gemini_messages, stream=True)
|
| 116 |
-
for chunk in stream:
|
| 117 |
-
yield chunk.text
|
| 118 |
|
| 119 |
elif provider == 'huggingface':
|
| 120 |
-
if not self.hf_client:
|
| 121 |
-
raise ValueError("Hugging Face API token not configured.")
|
| 122 |
hf_model_id = model_id.split('/', 1)[1]
|
| 123 |
stream = self.hf_client.chat_completion(model=hf_model_id, messages=messages, stream=True, max_tokens=max_tokens)
|
| 124 |
for chunk in stream:
|
| 125 |
-
if chunk.choices[0].delta.content:
|
| 126 |
-
yield chunk.choices[0].delta.content
|
| 127 |
else:
|
| 128 |
raise ValueError(f"Unknown provider: {provider}")
|
| 129 |
-
|
| 130 |
except Exception as e:
|
| 131 |
logging.error(f"LLM API Error with provider {provider}: {e}")
|
| 132 |
yield f"Error from {provider.capitalize()}: {str(e)}"
|
| 133 |
|
| 134 |
-
# The SearchService class remains unchanged
|
| 135 |
class SearchService:
|
| 136 |
def __init__(self, api_key: str = TAVILY_API_KEY):
|
| 137 |
-
if
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
else:
|
| 141 |
-
self.client = TavilyClient(api_key=api_key)
|
| 142 |
-
def is_available(self) -> bool:
|
| 143 |
-
return self.client is not None
|
| 144 |
def search(self, query: str, max_results: int = 5) -> str:
|
| 145 |
if not self.is_available(): return "Web search is not available."
|
| 146 |
try:
|
| 147 |
response = self.client.search(query, search_depth="advanced", max_results=min(max(1, max_results), 10))
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
except Exception as e:
|
| 151 |
-
logging.error(f"Tavily search error: {e}")
|
| 152 |
-
return f"Search error: {str(e)}"
|
| 153 |
|
| 154 |
-
# --- Singleton Instances ---
|
| 155 |
llm_service = LLMService()
|
| 156 |
search_service = SearchService()
|
|
|
|
| 1 |
# /services.py
|
| 2 |
+
""" Manages interactions with all external LLM and search APIs. """
|
| 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import os
|
| 5 |
import logging
|
| 6 |
from typing import Dict, Any, Generator, List
|
| 7 |
|
| 8 |
from dotenv import load_dotenv
|
|
|
|
|
|
|
| 9 |
from huggingface_hub import InferenceClient
|
| 10 |
from tavily import TavilyClient
|
| 11 |
from groq import Groq
|
|
|
|
| 13 |
import openai
|
| 14 |
import google.generativeai as genai
|
| 15 |
|
|
|
|
|
|
|
|
|
|
| 16 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 17 |
load_dotenv()
|
| 18 |
|
|
|
|
| 25 |
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
|
| 26 |
DEEPSEEK_API_KEY = os.getenv("DEEPSEEK_API_KEY")
|
| 27 |
|
|
|
|
| 28 |
Messages = List[Dict[str, Any]]
|
| 29 |
|
| 30 |
class LLMService:
|
| 31 |
"""A multi-provider wrapper for LLM Inference APIs."""
|
|
|
|
| 32 |
def __init__(self):
|
|
|
|
| 33 |
self.hf_client = InferenceClient(token=HF_TOKEN) if HF_TOKEN else None
|
| 34 |
self.groq_client = Groq(api_key=GROQ_API_KEY) if GROQ_API_KEY else None
|
| 35 |
self.openai_client = openai.OpenAI(api_key=OPENAI_API_KEY) if OPENAI_API_KEY else None
|
| 36 |
|
|
|
|
| 37 |
if DEEPSEEK_API_KEY:
|
| 38 |
+
self.deepseek_client = openai.OpenAI(api_key=DEEPSEEK_API_KEY, base_url="https://api.deepseek.com/v1")
|
|
|
|
|
|
|
|
|
|
| 39 |
else:
|
| 40 |
self.deepseek_client = None
|
| 41 |
|
|
|
|
| 52 |
self.gemini_model = None
|
| 53 |
|
| 54 |
def _prepare_messages_for_gemini(self, messages: Messages) -> List[Dict[str, Any]]:
|
|
|
|
| 55 |
gemini_messages = []
|
| 56 |
for msg in messages:
|
| 57 |
+
if msg['role'] == 'system': continue # Gemini doesn't use a system role in this way
|
| 58 |
role = 'model' if msg['role'] == 'assistant' else 'user'
|
| 59 |
gemini_messages.append({'role': role, 'parts': [msg['content']]})
|
| 60 |
return gemini_messages
|
| 61 |
|
| 62 |
+
def generate_code_stream(self, model_id: str, messages: Messages, max_tokens: int = 8192) -> Generator[str, None, None]:
|
|
|
|
|
|
|
|
|
|
| 63 |
provider, model_name = model_id.split('/', 1)
|
| 64 |
logging.info(f"Dispatching to provider: {provider} for model: {model_name}")
|
| 65 |
|
| 66 |
try:
|
| 67 |
if provider in ['openai', 'groq', 'deepseek', 'fireworks']:
|
| 68 |
+
client_map = {'openai': self.openai_client, 'groq': self.groq_client, 'deepseek': self.deepseek_client, 'fireworks': self.fireworks_client.ChatCompletion if self.fireworks_client else None}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
client = client_map.get(provider)
|
| 70 |
+
if not client: raise ValueError(f"{provider.capitalize()} API key not configured.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
+
stream = client.create(model=model_name, messages=messages, stream=True, max_tokens=max_tokens) if provider == 'fireworks' else client.chat.completions.create(model=model_name, messages=messages, stream=True, max_tokens=max_tokens)
|
| 73 |
for chunk in stream:
|
| 74 |
+
if chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.content: yield chunk.choices[0].delta.content
|
| 75 |
+
|
|
|
|
| 76 |
elif provider == 'gemini':
|
| 77 |
+
if not self.gemini_model: raise ValueError("Gemini API key not configured.")
|
| 78 |
+
system_prompt = next((msg['content'] for msg in messages if msg['role'] == 'system'), "")
|
| 79 |
gemini_messages = self._prepare_messages_for_gemini(messages)
|
| 80 |
+
# Prepend system prompt to first user message for Gemini
|
| 81 |
+
if system_prompt and gemini_messages and gemini_messages[0]['role'] == 'user':
|
| 82 |
+
gemini_messages[0]['parts'][0] = f"{system_prompt}\n\n{gemini_messages[0]['parts'][0]}"
|
| 83 |
stream = self.gemini_model.generate_content(gemini_messages, stream=True)
|
| 84 |
+
for chunk in stream: yield chunk.text
|
|
|
|
| 85 |
|
| 86 |
elif provider == 'huggingface':
|
| 87 |
+
if not self.hf_client: raise ValueError("Hugging Face API token not configured.")
|
|
|
|
| 88 |
hf_model_id = model_id.split('/', 1)[1]
|
| 89 |
stream = self.hf_client.chat_completion(model=hf_model_id, messages=messages, stream=True, max_tokens=max_tokens)
|
| 90 |
for chunk in stream:
|
| 91 |
+
if chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.content: yield chunk.choices[0].delta.content
|
|
|
|
| 92 |
else:
|
| 93 |
raise ValueError(f"Unknown provider: {provider}")
|
|
|
|
| 94 |
except Exception as e:
|
| 95 |
logging.error(f"LLM API Error with provider {provider}: {e}")
|
| 96 |
yield f"Error from {provider.capitalize()}: {str(e)}"
|
| 97 |
|
|
|
|
| 98 |
class SearchService:
|
| 99 |
def __init__(self, api_key: str = TAVILY_API_KEY):
|
| 100 |
+
self.client = TavilyClient(api_key=api_key) if api_key else None
|
| 101 |
+
if not self.client: logging.warning("TAVILY_API_KEY not set. Web search will be disabled.")
|
| 102 |
+
def is_available(self) -> bool: return self.client is not None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
def search(self, query: str, max_results: int = 5) -> str:
|
| 104 |
if not self.is_available(): return "Web search is not available."
|
| 105 |
try:
|
| 106 |
response = self.client.search(query, search_depth="advanced", max_results=min(max(1, max_results), 10))
|
| 107 |
+
return "Web Search Results:\n\n" + "\n---\n".join([f"Title: {res.get('title', 'N/A')}\nURL: {res.get('url', 'N/A')}\nContent: {res.get('content', 'N/A')}" for res in response.get('results', [])])
|
| 108 |
+
except Exception as e: return f"Search error: {str(e)}"
|
|
|
|
|
|
|
|
|
|
| 109 |
|
|
|
|
| 110 |
llm_service = LLMService()
|
| 111 |
search_service = SearchService()
|