Update media_processing.py
Browse files- media_processing.py +310 -1109
media_processing.py
CHANGED
|
@@ -1,1167 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
import base64
|
| 3 |
-
import cv2
|
| 4 |
-
import numpy as np
|
| 5 |
-
from PIL import Image
|
| 6 |
-
import pytesseract
|
| 7 |
import requests
|
| 8 |
-
from urllib.parse import urlparse, urljoin
|
| 9 |
-
from bs4 import BeautifulSoup
|
| 10 |
-
import html2text
|
| 11 |
-
import json
|
| 12 |
-
import time
|
| 13 |
-
import webbrowser
|
| 14 |
-
import urllib.parse
|
| 15 |
-
import copy
|
| 16 |
-
import html
|
| 17 |
import tempfile
|
| 18 |
-
import
|
| 19 |
-
import
|
| 20 |
-
import
|
| 21 |
-
import atexit
|
| 22 |
-
from huggingface_hub import HfApi
|
| 23 |
import gradio as gr
|
| 24 |
-
import subprocess
|
| 25 |
-
import re
|
| 26 |
-
|
| 27 |
-
# ---------------------------------------------------------------------------
|
| 28 |
-
# Video temp-file management (per-session tracking and cleanup)
|
| 29 |
-
# ---------------------------------------------------------------------------
|
| 30 |
-
VIDEO_TEMP_DIR = os.path.join(tempfile.gettempdir(), "anycoder_videos")
|
| 31 |
-
VIDEO_FILE_TTL_SECONDS = 6 * 60 * 60 # 6 hours
|
| 32 |
-
_SESSION_VIDEO_FILES: Dict[str, List[str]] = {}
|
| 33 |
-
_VIDEO_FILES_LOCK = threading.Lock()
|
| 34 |
-
|
| 35 |
-
def _ensure_video_dir_exists() -> None:
|
| 36 |
-
try:
|
| 37 |
-
os.makedirs(VIDEO_TEMP_DIR, exist_ok=True)
|
| 38 |
-
except Exception:
|
| 39 |
-
pass
|
| 40 |
-
|
| 41 |
-
def _register_video_for_session(session_id: Optional[str], file_path: str) -> None:
|
| 42 |
-
if not session_id or not file_path:
|
| 43 |
-
return
|
| 44 |
-
with _VIDEO_FILES_LOCK:
|
| 45 |
-
if session_id not in _SESSION_VIDEO_FILES:
|
| 46 |
-
_SESSION_VIDEO_FILES[session_id] = []
|
| 47 |
-
_SESSION_VIDEO_FILES[session_id].append(file_path)
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
with _VIDEO_FILES_LOCK:
|
| 53 |
-
file_list = _SESSION_VIDEO_FILES.pop(session_id, [])
|
| 54 |
-
for path in file_list:
|
| 55 |
-
try:
|
| 56 |
-
if path and os.path.exists(path):
|
| 57 |
-
os.unlink(path)
|
| 58 |
-
except Exception:
|
| 59 |
-
# Best-effort cleanup
|
| 60 |
-
pass
|
| 61 |
-
|
| 62 |
-
def reap_old_videos(ttl_seconds: int = VIDEO_FILE_TTL_SECONDS) -> None:
|
| 63 |
-
"""Delete old video files in the temp directory based on modification time."""
|
| 64 |
-
try:
|
| 65 |
-
_ensure_video_dir_exists()
|
| 66 |
-
now_ts = time.time()
|
| 67 |
-
for name in os.listdir(VIDEO_TEMP_DIR):
|
| 68 |
-
path = os.path.join(VIDEO_TEMP_DIR, name)
|
| 69 |
-
try:
|
| 70 |
-
if not os.path.isfile(path):
|
| 71 |
-
continue
|
| 72 |
-
mtime = os.path.getmtime(path)
|
| 73 |
-
if now_ts - mtime > ttl_seconds:
|
| 74 |
-
os.unlink(path)
|
| 75 |
-
except Exception:
|
| 76 |
-
pass
|
| 77 |
-
except Exception:
|
| 78 |
-
# Temp dir might not exist or be accessible; ignore
|
| 79 |
-
pass
|
| 80 |
-
|
| 81 |
-
# ---------------------------------------------------------------------------
|
| 82 |
-
# Audio temp-file management (per-session tracking and cleanup)
|
| 83 |
-
# ---------------------------------------------------------------------------
|
| 84 |
-
AUDIO_TEMP_DIR = os.path.join(tempfile.gettempdir(), "anycoder_audio")
|
| 85 |
-
AUDIO_FILE_TTL_SECONDS = 6 * 60 * 60 # 6 hours
|
| 86 |
-
_SESSION_AUDIO_FILES: Dict[str, List[str]] = {}
|
| 87 |
-
_AUDIO_FILES_LOCK = threading.Lock()
|
| 88 |
-
|
| 89 |
-
def _ensure_audio_dir_exists() -> None:
|
| 90 |
-
try:
|
| 91 |
-
os.makedirs(AUDIO_TEMP_DIR, exist_ok=True)
|
| 92 |
-
except Exception:
|
| 93 |
-
pass
|
| 94 |
-
|
| 95 |
-
def _register_audio_for_session(session_id: Optional[str], file_path: str) -> None:
|
| 96 |
-
if not session_id or not file_path:
|
| 97 |
-
return
|
| 98 |
-
with _AUDIO_FILES_LOCK:
|
| 99 |
-
if session_id not in _SESSION_AUDIO_FILES:
|
| 100 |
-
_SESSION_AUDIO_FILES[session_id] = []
|
| 101 |
-
_SESSION_AUDIO_FILES[session_id].append(file_path)
|
| 102 |
-
|
| 103 |
-
def cleanup_session_audio(session_id: Optional[str]) -> None:
|
| 104 |
-
if not session_id:
|
| 105 |
-
return
|
| 106 |
-
with _AUDIO_FILES_LOCK:
|
| 107 |
-
file_list = _SESSION_AUDIO_FILES.pop(session_id, [])
|
| 108 |
-
for path in file_list:
|
| 109 |
-
try:
|
| 110 |
-
if path and os.path.exists(path):
|
| 111 |
-
os.unlink(path)
|
| 112 |
-
except Exception:
|
| 113 |
-
pass
|
| 114 |
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
os.unlink(path)
|
| 127 |
-
except Exception:
|
| 128 |
-
pass
|
| 129 |
-
except Exception:
|
| 130 |
-
pass
|
| 131 |
-
|
| 132 |
-
# ---------------------------------------------------------------------------
|
| 133 |
-
# General temp media file management (per-session tracking and cleanup)
|
| 134 |
-
# ---------------------------------------------------------------------------
|
| 135 |
-
MEDIA_TEMP_DIR = os.path.join(tempfile.gettempdir(), "anycoder_media")
|
| 136 |
-
MEDIA_FILE_TTL_SECONDS = 6 * 60 * 60 # 6 hours
|
| 137 |
-
_SESSION_MEDIA_FILES: Dict[str, List[str]] = {}
|
| 138 |
-
_MEDIA_FILES_LOCK = threading.Lock()
|
| 139 |
-
|
| 140 |
-
# Global dictionary to store temporary media files for the session
|
| 141 |
-
temp_media_files = {}
|
| 142 |
-
|
| 143 |
-
def _ensure_media_dir_exists() -> None:
|
| 144 |
-
"""Ensure the media temp directory exists."""
|
| 145 |
-
try:
|
| 146 |
-
os.makedirs(MEDIA_TEMP_DIR, exist_ok=True)
|
| 147 |
-
except Exception:
|
| 148 |
-
pass
|
| 149 |
-
|
| 150 |
-
def track_session_media_file(session_id: Optional[str], file_path: str) -> None:
|
| 151 |
-
"""Track a media file for session-based cleanup."""
|
| 152 |
-
if not session_id or not file_path:
|
| 153 |
-
return
|
| 154 |
-
with _MEDIA_FILES_LOCK:
|
| 155 |
-
if session_id not in _SESSION_MEDIA_FILES:
|
| 156 |
-
_SESSION_MEDIA_FILES[session_id] = []
|
| 157 |
-
_SESSION_MEDIA_FILES[session_id].append(file_path)
|
| 158 |
-
|
| 159 |
-
def cleanup_session_media(session_id: Optional[str]) -> None:
|
| 160 |
-
"""Clean up media files for a specific session."""
|
| 161 |
-
if not session_id:
|
| 162 |
-
return
|
| 163 |
-
with _MEDIA_FILES_LOCK:
|
| 164 |
-
files_to_clean = _SESSION_MEDIA_FILES.pop(session_id, [])
|
| 165 |
|
| 166 |
-
|
|
|
|
|
|
|
| 167 |
try:
|
| 168 |
-
if
|
| 169 |
-
|
| 170 |
-
except Exception:
|
| 171 |
-
# Best-effort cleanup
|
| 172 |
-
pass
|
| 173 |
-
|
| 174 |
-
def reap_old_media(ttl_seconds: int = MEDIA_FILE_TTL_SECONDS) -> None:
|
| 175 |
-
"""Delete old media files in the temp directory based on modification time."""
|
| 176 |
-
try:
|
| 177 |
-
_ensure_media_dir_exists()
|
| 178 |
-
now_ts = time.time()
|
| 179 |
-
for name in os.listdir(MEDIA_TEMP_DIR):
|
| 180 |
-
path = os.path.join(MEDIA_TEMP_DIR, name)
|
| 181 |
-
if os.path.isfile(path):
|
| 182 |
-
try:
|
| 183 |
-
mtime = os.path.getmtime(path)
|
| 184 |
-
if (now_ts - mtime) > ttl_seconds:
|
| 185 |
-
os.unlink(path)
|
| 186 |
-
except Exception:
|
| 187 |
-
pass
|
| 188 |
-
except Exception:
|
| 189 |
-
# Temp dir might not exist or be accessible; ignore
|
| 190 |
-
pass
|
| 191 |
-
|
| 192 |
-
def cleanup_all_temp_media_on_startup() -> None:
|
| 193 |
-
"""Clean up all temporary media files on app startup."""
|
| 194 |
-
try:
|
| 195 |
-
# Clean up temp_media_files registry
|
| 196 |
-
temp_media_files.clear()
|
| 197 |
-
|
| 198 |
-
# Clean up actual files from disk (assume all are orphaned on startup)
|
| 199 |
-
_ensure_media_dir_exists()
|
| 200 |
-
for name in os.listdir(MEDIA_TEMP_DIR):
|
| 201 |
-
path = os.path.join(MEDIA_TEMP_DIR, name)
|
| 202 |
-
if os.path.isfile(path):
|
| 203 |
-
try:
|
| 204 |
-
os.unlink(path)
|
| 205 |
-
except Exception:
|
| 206 |
-
pass
|
| 207 |
-
|
| 208 |
-
# Clear session tracking
|
| 209 |
-
with _MEDIA_FILES_LOCK:
|
| 210 |
-
_SESSION_MEDIA_FILES.clear()
|
| 211 |
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
atexit.register(cleanup_all_temp_media_on_shutdown)
|
| 247 |
-
|
| 248 |
-
def create_temp_media_url(media_bytes: bytes, filename: str, media_type: str = "image", session_id: Optional[str] = None) -> str:
|
| 249 |
-
"""Create a temporary file and return a local URL for preview."""
|
| 250 |
-
try:
|
| 251 |
-
# Create unique filename with timestamp and UUID
|
| 252 |
-
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 253 |
-
unique_id = str(uuid.uuid4())[:8]
|
| 254 |
-
base_name, ext = os.path.splitext(filename)
|
| 255 |
-
unique_filename = f"{media_type}_{timestamp}_{unique_id}_{base_name}{ext}"
|
| 256 |
-
|
| 257 |
-
# Create temporary file in the dedicated directory
|
| 258 |
-
_ensure_media_dir_exists()
|
| 259 |
-
temp_path = os.path.join(MEDIA_TEMP_DIR, unique_filename)
|
| 260 |
-
|
| 261 |
-
# Write media bytes to temporary file
|
| 262 |
-
with open(temp_path, 'wb') as f:
|
| 263 |
-
f.write(media_bytes)
|
| 264 |
-
|
| 265 |
-
# Track file for session-based cleanup
|
| 266 |
-
if session_id:
|
| 267 |
-
track_session_media_file(session_id, temp_path)
|
| 268 |
-
|
| 269 |
-
# Store the file info for later upload
|
| 270 |
-
file_id = f"{media_type}_{unique_id}"
|
| 271 |
-
temp_media_files[file_id] = {
|
| 272 |
-
'path': temp_path,
|
| 273 |
-
'filename': filename,
|
| 274 |
-
'media_type': media_type,
|
| 275 |
-
'media_bytes': media_bytes
|
| 276 |
-
}
|
| 277 |
-
|
| 278 |
-
# Return file:// URL for preview
|
| 279 |
-
file_url = f"file://{temp_path}"
|
| 280 |
-
print(f"[TempMedia] Created temporary {media_type} file: {file_url}")
|
| 281 |
-
return file_url
|
| 282 |
-
|
| 283 |
-
except Exception as e:
|
| 284 |
-
print(f"[TempMedia] Failed to create temporary file: {str(e)}")
|
| 285 |
-
return f"Error creating temporary {media_type} file: {str(e)}"
|
| 286 |
-
|
| 287 |
-
def upload_media_to_hf(media_bytes: bytes, filename: str, media_type: str = "image", token: gr.OAuthToken | None = None, use_temp: bool = True) -> str:
|
| 288 |
-
"""Upload media file to user's Hugging Face account or create temporary file."""
|
| 289 |
-
try:
|
| 290 |
-
# If use_temp is True, create temporary file for preview
|
| 291 |
-
if use_temp:
|
| 292 |
-
return create_temp_media_url(media_bytes, filename, media_type)
|
| 293 |
-
|
| 294 |
-
# Otherwise, upload to Hugging Face for permanent URL
|
| 295 |
-
# Try to get token from OAuth first, then fall back to environment variable
|
| 296 |
-
hf_token = None
|
| 297 |
-
if token and token.token:
|
| 298 |
-
hf_token = token.token
|
| 299 |
-
else:
|
| 300 |
-
hf_token = os.getenv('HF_TOKEN')
|
| 301 |
-
|
| 302 |
-
if not hf_token:
|
| 303 |
-
return "Error: Please log in with your Hugging Face account to upload media, or set HF_TOKEN environment variable."
|
| 304 |
-
|
| 305 |
-
# Initialize HF API
|
| 306 |
-
api = HfApi(token=hf_token)
|
| 307 |
-
|
| 308 |
-
# Get current user info to determine username
|
| 309 |
try:
|
| 310 |
-
|
| 311 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 312 |
except Exception as e:
|
| 313 |
-
print(f"
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
try:
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 326 |
)
|
| 327 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 328 |
except Exception as e:
|
| 329 |
-
print(f"[
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
base_name, ext = os.path.splitext(filename)
|
| 336 |
-
unique_filename = f"{media_type}/{timestamp}_{unique_id}_{base_name}{ext}"
|
| 337 |
-
|
| 338 |
-
# Create temporary file for upload
|
| 339 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=ext) as temp_file:
|
| 340 |
-
temp_file.write(media_bytes)
|
| 341 |
-
temp_path = temp_file.name
|
| 342 |
-
|
| 343 |
try:
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 351 |
)
|
| 352 |
|
| 353 |
-
|
| 354 |
-
permanent_url = f"https://huggingface.co/datasets/{repo_name}/resolve/main/{unique_filename}"
|
| 355 |
-
print(f"[HFUpload] Successfully uploaded {media_type} to {permanent_url}")
|
| 356 |
-
return permanent_url
|
| 357 |
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
else
|
| 396 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 397 |
|
| 398 |
-
except Exception as e:
|
| 399 |
-
print(f"[DeployUpload] Error uploading {file_id}: {str(e)}")
|
| 400 |
-
continue
|
| 401 |
-
|
| 402 |
-
# Clean up temporary files after upload
|
| 403 |
-
cleanup_temp_media_files()
|
| 404 |
-
|
| 405 |
-
return updated_content
|
| 406 |
-
|
| 407 |
-
except Exception as e:
|
| 408 |
-
print(f"[DeployUpload] Failed to upload temporary files: {str(e)}")
|
| 409 |
-
return html_content
|
| 410 |
-
|
| 411 |
-
def cleanup_temp_media_files():
|
| 412 |
-
"""Clean up temporary media files from disk and memory."""
|
| 413 |
-
try:
|
| 414 |
-
for file_id, file_info in temp_media_files.items():
|
| 415 |
try:
|
| 416 |
-
|
| 417 |
-
os.remove(file_info['path'])
|
| 418 |
-
print(f"[TempCleanup] Removed {file_info['path']}")
|
| 419 |
except Exception as e:
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
bill_to="huggingface",
|
| 441 |
-
)
|
| 442 |
-
|
| 443 |
-
# Generate image using Qwen/Qwen-Image model
|
| 444 |
-
image = client.text_to_image(
|
| 445 |
-
prompt,
|
| 446 |
-
model="Qwen/Qwen-Image",
|
| 447 |
-
)
|
| 448 |
-
|
| 449 |
-
# Resize image to reduce size while maintaining quality
|
| 450 |
-
max_size = 1024 # Increased size since we're not using data URIs
|
| 451 |
-
if image.width > max_size or image.height > max_size:
|
| 452 |
-
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
|
| 453 |
-
|
| 454 |
-
# Convert PIL Image to bytes for upload
|
| 455 |
-
import io
|
| 456 |
-
buffer = io.BytesIO()
|
| 457 |
-
# Save as JPEG with good quality since we're not embedding
|
| 458 |
-
image.convert('RGB').save(buffer, format='JPEG', quality=90, optimize=True)
|
| 459 |
-
image_bytes = buffer.getvalue()
|
| 460 |
-
|
| 461 |
-
# Create temporary URL for preview (will be uploaded to HF during deploy)
|
| 462 |
-
filename = f"generated_image_{image_index}.jpg"
|
| 463 |
-
temp_url = upload_media_to_hf(image_bytes, filename, "image", token, use_temp=True)
|
| 464 |
-
|
| 465 |
-
# Check if creation was successful
|
| 466 |
-
if temp_url.startswith("Error"):
|
| 467 |
-
return temp_url
|
| 468 |
-
|
| 469 |
-
# Return HTML img tag with temporary URL
|
| 470 |
-
return f'<img src="{temp_url}" alt="{prompt}" style="max-width: 100%; height: auto; border-radius: 8px; margin: 10px 0;" loading="lazy" />'
|
| 471 |
-
|
| 472 |
-
except Exception as e:
|
| 473 |
-
print(f"Image generation error: {str(e)}")
|
| 474 |
-
return f"Error generating image: {str(e)}"
|
| 475 |
-
|
| 476 |
-
def generate_image_to_image(input_image_data, prompt: str, token: gr.OAuthToken | None = None) -> str:
|
| 477 |
-
"""Generate an image using image-to-image with Qwen-Image-Edit via Hugging Face InferenceClient."""
|
| 478 |
-
try:
|
| 479 |
-
# Check token
|
| 480 |
-
if not os.getenv('HF_TOKEN'):
|
| 481 |
-
return "Error: HF_TOKEN environment variable is not set. Please set it to your Hugging Face API token."
|
| 482 |
-
|
| 483 |
-
# Prepare client
|
| 484 |
-
client = InferenceClient(
|
| 485 |
-
provider="auto",
|
| 486 |
-
api_key=os.getenv('HF_TOKEN'),
|
| 487 |
-
bill_to="huggingface",
|
| 488 |
-
)
|
| 489 |
-
|
| 490 |
-
# Normalize input image to bytes
|
| 491 |
-
import io
|
| 492 |
-
from PIL import Image
|
| 493 |
-
try:
|
| 494 |
-
import numpy as np
|
| 495 |
-
except Exception:
|
| 496 |
-
np = None
|
| 497 |
-
|
| 498 |
if hasattr(input_image_data, 'read'):
|
| 499 |
-
# File-like object
|
| 500 |
raw = input_image_data.read()
|
| 501 |
pil_image = Image.open(io.BytesIO(raw))
|
| 502 |
elif hasattr(input_image_data, 'mode') and hasattr(input_image_data, 'size'):
|
| 503 |
-
# PIL Image
|
| 504 |
pil_image = input_image_data
|
| 505 |
-
elif
|
| 506 |
pil_image = Image.fromarray(input_image_data)
|
| 507 |
elif isinstance(input_image_data, (bytes, bytearray)):
|
| 508 |
pil_image = Image.open(io.BytesIO(input_image_data))
|
| 509 |
else:
|
| 510 |
-
# Fallback: try to convert via bytes
|
| 511 |
pil_image = Image.open(io.BytesIO(bytes(input_image_data)))
|
| 512 |
-
|
| 513 |
# Ensure RGB
|
| 514 |
if pil_image.mode != 'RGB':
|
| 515 |
pil_image = pil_image.convert('RGB')
|
| 516 |
-
|
| 517 |
-
# Resize input image to avoid request body size limits
|
| 518 |
-
max_input_size = 1024
|
| 519 |
-
if pil_image.width > max_input_size or pil_image.height > max_input_size:
|
| 520 |
-
pil_image.thumbnail((max_input_size, max_input_size), Image.Resampling.LANCZOS)
|
| 521 |
-
|
| 522 |
-
buf = io.BytesIO()
|
| 523 |
-
pil_image.save(buf, format='JPEG', quality=85, optimize=True)
|
| 524 |
-
input_bytes = buf.getvalue()
|
| 525 |
-
|
| 526 |
-
# Call image-to-image
|
| 527 |
-
image = client.image_to_image(
|
| 528 |
-
input_bytes,
|
| 529 |
-
prompt=prompt,
|
| 530 |
-
model="Qwen/Qwen-Image-Edit",
|
| 531 |
-
)
|
| 532 |
-
|
| 533 |
-
# Resize/optimize (larger since not using data URIs)
|
| 534 |
-
max_size = 1024
|
| 535 |
-
if image.width > max_size or image.height > max_size:
|
| 536 |
-
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
|
| 537 |
-
|
| 538 |
-
out_buf = io.BytesIO()
|
| 539 |
-
image.convert('RGB').save(out_buf, format='JPEG', quality=90, optimize=True)
|
| 540 |
-
image_bytes = out_buf.getvalue()
|
| 541 |
-
|
| 542 |
-
# Create temporary URL for preview (will be uploaded to HF during deploy)
|
| 543 |
-
filename = "image_to_image_result.jpg"
|
| 544 |
-
temp_url = upload_media_to_hf(image_bytes, filename, "image", token, use_temp=True)
|
| 545 |
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
print(f"Image-to-image generation error: {str(e)}")
|
| 553 |
-
return f"Error generating image (image-to-image): {str(e)}"
|
| 554 |
-
|
| 555 |
-
def generate_video_from_image(input_image_data, prompt: str, session_id: Optional[str] = None, token: gr.OAuthToken | None = None) -> str:
|
| 556 |
-
"""Generate a video from an input image and prompt using Hugging Face InferenceClient."""
|
| 557 |
-
try:
|
| 558 |
-
print("[Image2Video] Starting video generation")
|
| 559 |
-
if not os.getenv('HF_TOKEN'):
|
| 560 |
-
print("[Image2Video] Missing HF_TOKEN")
|
| 561 |
-
return "Error: HF_TOKEN environment variable is not set. Please set it to your Hugging Face API token."
|
| 562 |
-
|
| 563 |
-
# Prepare client
|
| 564 |
-
client = InferenceClient(
|
| 565 |
-
provider="auto",
|
| 566 |
-
api_key=os.getenv('HF_TOKEN'),
|
| 567 |
-
bill_to="huggingface",
|
| 568 |
-
)
|
| 569 |
-
print(f"[Image2Video] InferenceClient initialized (provider=auto)")
|
| 570 |
-
|
| 571 |
-
# Normalize input image to bytes, with downscale/compress to cap request size
|
| 572 |
-
import io
|
| 573 |
-
from PIL import Image
|
| 574 |
-
try:
|
| 575 |
-
import numpy as np
|
| 576 |
-
except Exception:
|
| 577 |
-
np = None
|
| 578 |
-
|
| 579 |
-
def _load_pil(img_like) -> Image.Image:
|
| 580 |
-
if hasattr(img_like, 'read'):
|
| 581 |
-
return Image.open(io.BytesIO(img_like.read()))
|
| 582 |
-
if hasattr(img_like, 'mode') and hasattr(img_like, 'size'):
|
| 583 |
-
return img_like
|
| 584 |
-
if np is not None and isinstance(img_like, np.ndarray):
|
| 585 |
-
return Image.fromarray(img_like)
|
| 586 |
-
if isinstance(img_like, (bytes, bytearray)):
|
| 587 |
-
return Image.open(io.BytesIO(img_like))
|
| 588 |
-
return Image.open(io.BytesIO(bytes(img_like)))
|
| 589 |
-
|
| 590 |
-
pil_image = _load_pil(input_image_data)
|
| 591 |
-
if pil_image.mode != 'RGB':
|
| 592 |
-
pil_image = pil_image.convert('RGB')
|
| 593 |
-
try:
|
| 594 |
-
print(f"[Image2Video] Input PIL image size={pil_image.size} mode={pil_image.mode}")
|
| 595 |
-
except Exception:
|
| 596 |
-
pass
|
| 597 |
-
|
| 598 |
-
# Progressive encode to keep payload under ~3.9MB (below 4MB limit)
|
| 599 |
-
MAX_BYTES = 3_900_000
|
| 600 |
-
max_dim = 1024 # initial cap on longest edge
|
| 601 |
quality = 90
|
| 602 |
-
|
| 603 |
def encode_current(pil: Image.Image, q: int) -> bytes:
|
| 604 |
tmp = io.BytesIO()
|
| 605 |
pil.save(tmp, format='JPEG', quality=q, optimize=True)
|
| 606 |
return tmp.getvalue()
|
| 607 |
-
|
| 608 |
-
# Downscale while
|
| 609 |
while max(pil_image.size) > max_dim:
|
| 610 |
ratio = max_dim / float(max(pil_image.size))
|
| 611 |
new_size = (max(1, int(pil_image.size[0] * ratio)), max(1, int(pil_image.size[1] * ratio)))
|
| 612 |
pil_image = pil_image.resize(new_size, Image.Resampling.LANCZOS)
|
| 613 |
-
|
| 614 |
encoded = encode_current(pil_image, quality)
|
| 615 |
-
|
|
|
|
| 616 |
while len(encoded) > MAX_BYTES and (quality > 40 or max(pil_image.size) > 640):
|
| 617 |
if quality > 40:
|
| 618 |
quality -= 10
|
| 619 |
else:
|
| 620 |
-
# reduce dims by 15% if already at low quality
|
| 621 |
new_w = max(1, int(pil_image.size[0] * 0.85))
|
| 622 |
new_h = max(1, int(pil_image.size[1] * 0.85))
|
| 623 |
pil_image = pil_image.resize((new_w, new_h), Image.Resampling.LANCZOS)
|
| 624 |
encoded = encode_current(pil_image, quality)
|
| 625 |
-
|
| 626 |
-
input_bytes = encoded
|
| 627 |
-
|
| 628 |
-
# Call image-to-video; require method support
|
| 629 |
-
model_id = "Lightricks/LTX-Video-0.9.8-13B-distilled"
|
| 630 |
-
image_to_video_method = getattr(client, "image_to_video", None)
|
| 631 |
-
if not callable(image_to_video_method):
|
| 632 |
-
print("[Image2Video] InferenceClient.image_to_video not available in this huggingface_hub version")
|
| 633 |
-
return (
|
| 634 |
-
"Error generating video (image-to-video): Your installed huggingface_hub version "
|
| 635 |
-
"does not expose InferenceClient.image_to_video. Please upgrade with "
|
| 636 |
-
"`pip install -U huggingface_hub` and try again."
|
| 637 |
-
)
|
| 638 |
-
print(f"[Image2Video] Calling image_to_video with model={model_id}, prompt length={len(prompt or '')}")
|
| 639 |
-
video_bytes = image_to_video_method(
|
| 640 |
-
input_bytes,
|
| 641 |
-
prompt=prompt,
|
| 642 |
-
model=model_id,
|
| 643 |
-
)
|
| 644 |
-
print(f"[Image2Video] Received video bytes: {len(video_bytes) if hasattr(video_bytes, '__len__') else 'unknown length'}")
|
| 645 |
-
|
| 646 |
-
# Create temporary URL for preview (will be uploaded to HF during deploy)
|
| 647 |
-
filename = "image_to_video_result.mp4"
|
| 648 |
-
temp_url = upload_media_to_hf(video_bytes, filename, "video", token, use_temp=True)
|
| 649 |
-
|
| 650 |
-
# Check if creation was successful
|
| 651 |
-
if temp_url.startswith("Error"):
|
| 652 |
-
return temp_url
|
| 653 |
-
|
| 654 |
-
video_html = (
|
| 655 |
-
f'<video controls autoplay muted loop playsinline '
|
| 656 |
-
f'style="max-width: 100%; height: auto; border-radius: 8px; margin: 10px 0; display: block;" '
|
| 657 |
-
f'onloadstart="this.style.backgroundColor=\'#f0f0f0\'" '
|
| 658 |
-
f'onerror="this.style.display=\'none\'; console.error(\'Video failed to load\')">'
|
| 659 |
-
f'<source src="{temp_url}" type="video/mp4" />'
|
| 660 |
-
f'<p style="text-align: center; color: #666;">Your browser does not support the video tag.</p>'
|
| 661 |
-
f'</video>'
|
| 662 |
-
)
|
| 663 |
-
|
| 664 |
-
print(f"[Image2Video] Successfully generated video HTML tag with temporary URL: {temp_url}")
|
| 665 |
-
|
| 666 |
-
# Validate the generated video HTML
|
| 667 |
-
if not validate_video_html(video_html):
|
| 668 |
-
print("[Image2Video] Generated video HTML failed validation")
|
| 669 |
-
return "Error: Generated video HTML is malformed"
|
| 670 |
-
|
| 671 |
-
return video_html
|
| 672 |
-
except Exception as e:
|
| 673 |
-
import traceback
|
| 674 |
-
print("[Image2Video] Exception during generation:")
|
| 675 |
-
traceback.print_exc()
|
| 676 |
-
print(f"Image-to-video generation error: {str(e)}")
|
| 677 |
-
return f"Error generating video (image-to-video): {str(e)}"
|
| 678 |
-
|
| 679 |
-
def generate_video_from_text(prompt: str, session_id: Optional[str] = None, token: gr.OAuthToken | None = None) -> str:
|
| 680 |
-
"""Generate a video from a text prompt using Hugging Face InferenceClient."""
|
| 681 |
-
try:
|
| 682 |
-
print("[Text2Video] Starting video generation from text")
|
| 683 |
-
if not os.getenv('HF_TOKEN'):
|
| 684 |
-
print("[Text2Video] Missing HF_TOKEN")
|
| 685 |
-
return "Error: HF_TOKEN environment variable is not set. Please set it to your Hugging Face API token."
|
| 686 |
-
|
| 687 |
-
client = InferenceClient(
|
| 688 |
-
provider="auto",
|
| 689 |
-
api_key=os.getenv('HF_TOKEN'),
|
| 690 |
-
bill_to="huggingface",
|
| 691 |
-
)
|
| 692 |
-
print("[Text2Video] InferenceClient initialized (provider=auto)")
|
| 693 |
-
|
| 694 |
-
# Ensure the client has text_to_video (newer huggingface_hub)
|
| 695 |
-
text_to_video_method = getattr(client, "text_to_video", None)
|
| 696 |
-
if not callable(text_to_video_method):
|
| 697 |
-
print("[Text2Video] InferenceClient.text_to_video not available in this huggingface_hub version")
|
| 698 |
-
return (
|
| 699 |
-
"Error generating video (text-to-video): Your installed huggingface_hub version "
|
| 700 |
-
"does not expose InferenceClient.text_to_video. Please upgrade with "
|
| 701 |
-
"`pip install -U huggingface_hub` and try again."
|
| 702 |
-
)
|
| 703 |
-
|
| 704 |
-
model_id = "Wan-AI/Wan2.2-T2V-A14B"
|
| 705 |
-
prompt_str = (prompt or "").strip()
|
| 706 |
-
print(f"[Text2Video] Calling text_to_video with model={model_id}, prompt length={len(prompt_str)}")
|
| 707 |
-
video_bytes = text_to_video_method(
|
| 708 |
-
prompt_str,
|
| 709 |
-
model=model_id,
|
| 710 |
-
)
|
| 711 |
-
print(f"[Text2Video] Received video bytes: {len(video_bytes) if hasattr(video_bytes, '__len__') else 'unknown length'}")
|
| 712 |
-
|
| 713 |
-
# Create temporary URL for preview (will be uploaded to HF during deploy)
|
| 714 |
-
filename = "text_to_video_result.mp4"
|
| 715 |
-
temp_url = upload_media_to_hf(video_bytes, filename, "video", token, use_temp=True)
|
| 716 |
-
|
| 717 |
-
# Check if creation was successful
|
| 718 |
-
if temp_url.startswith("Error"):
|
| 719 |
-
return temp_url
|
| 720 |
-
|
| 721 |
-
video_html = (
|
| 722 |
-
f'<video controls autoplay muted loop playsinline '
|
| 723 |
-
f'style="max-width: 100%; height: auto; border-radius: 8px; margin: 10px 0; display: block;" '
|
| 724 |
-
f'onloadstart="this.style.backgroundColor=\'#f0f0f0\'" '
|
| 725 |
-
f'onerror="this.style.display=\'none\'; console.error(\'Video failed to load\')">'
|
| 726 |
-
f'<source src="{temp_url}" type="video/mp4" />'
|
| 727 |
-
f'<p style="text-align: center; color: #666;">Your browser does not support the video tag.</p>'
|
| 728 |
-
f'</video>'
|
| 729 |
-
)
|
| 730 |
-
|
| 731 |
-
print(f"[Text2Video] Successfully generated video HTML tag with temporary URL: {temp_url}")
|
| 732 |
-
|
| 733 |
-
# Validate the generated video HTML
|
| 734 |
-
if not validate_video_html(video_html):
|
| 735 |
-
print("[Text2Video] Generated video HTML failed validation")
|
| 736 |
-
return "Error: Generated video HTML is malformed"
|
| 737 |
-
|
| 738 |
-
return video_html
|
| 739 |
-
except Exception as e:
|
| 740 |
-
import traceback
|
| 741 |
-
print("[Text2Video] Exception during generation:")
|
| 742 |
-
traceback.print_exc()
|
| 743 |
-
print(f"Text-to-video generation error: {str(e)}")
|
| 744 |
-
return f"Error generating video (text-to-video): {str(e)}"
|
| 745 |
-
|
| 746 |
-
def generate_music_from_text(prompt: str, music_length_ms: int = 30000, session_id: Optional[str] = None, token: gr.OAuthToken | None = None) -> str:
|
| 747 |
-
"""Generate music from a text prompt using ElevenLabs Music API and return an HTML <audio> tag."""
|
| 748 |
-
try:
|
| 749 |
-
api_key = os.getenv('ELEVENLABS_API_KEY')
|
| 750 |
-
if not api_key:
|
| 751 |
-
return "Error: ELEVENLABS_API_KEY environment variable is not set."
|
| 752 |
-
|
| 753 |
-
headers = {
|
| 754 |
-
'Content-Type': 'application/json',
|
| 755 |
-
'xi-api-key': api_key,
|
| 756 |
-
}
|
| 757 |
-
payload = {
|
| 758 |
-
'prompt': (prompt or 'Epic orchestral theme with soaring strings and powerful brass'),
|
| 759 |
-
'music_length_ms': int(music_length_ms) if music_length_ms else 30000,
|
| 760 |
-
}
|
| 761 |
-
|
| 762 |
-
resp = requests.post('https://api.elevenlabs.io/v1/music/compose', headers=headers, json=payload)
|
| 763 |
-
try:
|
| 764 |
-
resp.raise_for_status()
|
| 765 |
-
except Exception as e:
|
| 766 |
-
return f"Error generating music: {getattr(e, 'response', resp).text if hasattr(e, 'response') else resp.text}"
|
| 767 |
-
|
| 768 |
-
# Create temporary URL for preview (will be uploaded to HF during deploy)
|
| 769 |
-
filename = "generated_music.mp3"
|
| 770 |
-
temp_url = upload_media_to_hf(resp.content, filename, "audio", token, use_temp=True)
|
| 771 |
-
|
| 772 |
-
# Check if creation was successful
|
| 773 |
-
if temp_url.startswith("Error"):
|
| 774 |
-
return temp_url
|
| 775 |
|
| 776 |
-
|
| 777 |
-
"<div class=\"anycoder-music\" style=\"max-width:420px;margin:16px auto;padding:12px 16px;border:1px solid #e5e7eb;border-radius:12px;background:linear-gradient(180deg,#fafafa,#f3f4f6);box-shadow:0 2px 8px rgba(0,0,0,0.06)\">"
|
| 778 |
-
" <div style=\"font-size:13px;color:#374151;margin-bottom:8px;display:flex:align-items:center;gap:6px\">"
|
| 779 |
-
" <span>🎵 Generated music</span>"
|
| 780 |
-
" </div>"
|
| 781 |
-
f" <audio controls autoplay loop style=\"width:100%;outline:none;\">"
|
| 782 |
-
f" <source src=\"{temp_url}\" type=\"audio/mpeg\" />"
|
| 783 |
-
" Your browser does not support the audio element."
|
| 784 |
-
" </audio>"
|
| 785 |
-
"</div>"
|
| 786 |
-
)
|
| 787 |
-
|
| 788 |
-
print(f"[Music] Successfully generated music HTML tag with temporary URL: {temp_url}")
|
| 789 |
-
return audio_html
|
| 790 |
-
except Exception as e:
|
| 791 |
-
return f"Error generating music: {str(e)}"
|
| 792 |
-
|
| 793 |
-
def extract_image_prompts_from_text(text: str, num_images_needed: int = 1) -> list:
|
| 794 |
-
"""Extract image generation prompts from the full text based on number of images needed"""
|
| 795 |
-
# Use the entire text as the base prompt for image generation
|
| 796 |
-
# Clean up the text and create variations for the required number of images
|
| 797 |
-
|
| 798 |
-
# Clean the text
|
| 799 |
-
cleaned_text = text.strip()
|
| 800 |
-
if not cleaned_text:
|
| 801 |
-
return []
|
| 802 |
-
|
| 803 |
-
# Create variations of the prompt for the required number of images
|
| 804 |
-
prompts = []
|
| 805 |
-
|
| 806 |
-
# Generate exactly the number of images needed
|
| 807 |
-
for i in range(num_images_needed):
|
| 808 |
-
if i == 0:
|
| 809 |
-
# First image: Use the full prompt as-is
|
| 810 |
-
prompts.append(cleaned_text)
|
| 811 |
-
elif i == 1:
|
| 812 |
-
# Second image: Add "visual representation" to make it more image-focused
|
| 813 |
-
prompts.append(f"Visual representation of {cleaned_text}")
|
| 814 |
-
elif i == 2:
|
| 815 |
-
# Third image: Add "illustration" to create a different style
|
| 816 |
-
prompts.append(f"Illustration of {cleaned_text}")
|
| 817 |
-
else:
|
| 818 |
-
# For additional images, use different variations
|
| 819 |
-
variations = [
|
| 820 |
-
f"Digital art of {cleaned_text}",
|
| 821 |
-
f"Modern design of {cleaned_text}",
|
| 822 |
-
f"Professional illustration of {cleaned_text}",
|
| 823 |
-
f"Clean design of {cleaned_text}",
|
| 824 |
-
f"Beautiful visualization of {cleaned_text}",
|
| 825 |
-
f"Stylish representation of {cleaned_text}",
|
| 826 |
-
f"Contemporary design of {cleaned_text}",
|
| 827 |
-
f"Elegant illustration of {cleaned_text}"
|
| 828 |
-
]
|
| 829 |
-
variation_index = (i - 3) % len(variations)
|
| 830 |
-
prompts.append(variations[variation_index])
|
| 831 |
-
|
| 832 |
-
return prompts
|
| 833 |
-
|
| 834 |
-
def create_image_replacement_blocks(html_content: str, user_prompt: str) -> str:
|
| 835 |
-
"""Create search/replace blocks to replace placeholder images with generated Qwen images"""
|
| 836 |
-
if not user_prompt:
|
| 837 |
-
return ""
|
| 838 |
-
|
| 839 |
-
# Find existing image placeholders in the HTML first
|
| 840 |
-
import re
|
| 841 |
-
|
| 842 |
-
# Common patterns for placeholder images
|
| 843 |
-
placeholder_patterns = [
|
| 844 |
-
r'<img[^>]*src=["\'](?:placeholder|dummy|sample|example)[^"\']*["\'][^>]*>',
|
| 845 |
-
r'<img[^>]*src=["\']https?://via\.placeholder\.com[^"\']*["\'][^>]*>',
|
| 846 |
-
r'<img[^>]*src=["\']https?://picsum\.photos[^"\']*["\'][^>]*>',
|
| 847 |
-
r'<img[^>]*src=["\']https?://dummyimage\.com[^"\']*["\'][^>]*>',
|
| 848 |
-
r'<img[^>]*alt=["\'][^"\']*placeholder[^"\']*["\'][^>]*>',
|
| 849 |
-
r'<img[^>]*class=["\'][^"\']*placeholder[^"\']*["\'][^>]*>',
|
| 850 |
-
r'<img[^>]*id=["\'][^"\']*placeholder[^"\']*["\'][^>]*>',
|
| 851 |
-
r'<img[^>]*src=["\']data:image[^"\']*["\'][^>]*>', # Base64 images
|
| 852 |
-
r'<img[^>]*src=["\']#["\'][^>]*>', # Empty src
|
| 853 |
-
r'<img[^>]*src=["\']about:blank["\'][^>]*>', # About blank
|
| 854 |
-
]
|
| 855 |
-
|
| 856 |
-
# Find all placeholder images
|
| 857 |
-
placeholder_images = []
|
| 858 |
-
for pattern in placeholder_patterns:
|
| 859 |
-
matches = re.findall(pattern, html_content, re.IGNORECASE)
|
| 860 |
-
placeholder_images.extend(matches)
|
| 861 |
-
|
| 862 |
-
# Filter out HF URLs from placeholders (they are real generated content)
|
| 863 |
-
placeholder_images = [img for img in placeholder_images if 'huggingface.co/datasets/' not in img]
|
| 864 |
-
|
| 865 |
-
# If no placeholder images found, look for any img tags
|
| 866 |
-
if not placeholder_images:
|
| 867 |
-
img_pattern = r'<img[^>]*>'
|
| 868 |
-
# Case-insensitive to catch <IMG> or mixed-case tags
|
| 869 |
-
placeholder_images = re.findall(img_pattern, html_content, re.IGNORECASE)
|
| 870 |
-
|
| 871 |
-
# Also look for div elements that might be image placeholders
|
| 872 |
-
div_placeholder_patterns = [
|
| 873 |
-
r'<div[^>]*class=["\'][^"\']*(?:image|img|photo|picture)[^"\']*["\'][^>]*>.*?</div>',
|
| 874 |
-
r'<div[^>]*id=["\'][^"\']*(?:image|img|photo|picture)[^"\']*["\'][^>]*>.*?</div>',
|
| 875 |
-
]
|
| 876 |
-
|
| 877 |
-
for pattern in div_placeholder_patterns:
|
| 878 |
-
matches = re.findall(pattern, html_content, re.IGNORECASE | re.DOTALL)
|
| 879 |
-
placeholder_images.extend(matches)
|
| 880 |
-
|
| 881 |
-
# Count how many images we need to generate
|
| 882 |
-
num_images_needed = len(placeholder_images)
|
| 883 |
-
|
| 884 |
-
if num_images_needed == 0:
|
| 885 |
-
return ""
|
| 886 |
-
|
| 887 |
-
# Generate image prompts based on the number of images found
|
| 888 |
-
image_prompts = extract_image_prompts_from_text(user_prompt, num_images_needed)
|
| 889 |
-
|
| 890 |
-
# Generate images for each prompt
|
| 891 |
-
generated_images = []
|
| 892 |
-
for i, prompt in enumerate(image_prompts):
|
| 893 |
-
image_html = generate_image_with_qwen(prompt, i, token=None) # TODO: Pass token from parent context
|
| 894 |
-
if not image_html.startswith("Error"):
|
| 895 |
-
generated_images.append((i, image_html))
|
| 896 |
-
|
| 897 |
-
if not generated_images:
|
| 898 |
-
return ""
|
| 899 |
-
|
| 900 |
-
# Create search/replace blocks
|
| 901 |
-
replacement_blocks = []
|
| 902 |
-
|
| 903 |
-
for i, (prompt_index, generated_image) in enumerate(generated_images):
|
| 904 |
-
if i < len(placeholder_images):
|
| 905 |
-
# Replace existing placeholder
|
| 906 |
-
placeholder = placeholder_images[i]
|
| 907 |
-
# Clean up the placeholder for better matching
|
| 908 |
-
placeholder_clean = re.sub(r'\s+', ' ', placeholder.strip())
|
| 909 |
-
|
| 910 |
-
# Try multiple variations of the placeholder for better matching
|
| 911 |
-
placeholder_variations = [
|
| 912 |
-
placeholder_clean,
|
| 913 |
-
placeholder_clean.replace('"', "'"),
|
| 914 |
-
placeholder_clean.replace("'", '"'),
|
| 915 |
-
re.sub(r'\s+', ' ', placeholder_clean),
|
| 916 |
-
placeholder_clean.replace(' ', ' '),
|
| 917 |
-
]
|
| 918 |
-
|
| 919 |
-
# Create a replacement block for each variation
|
| 920 |
-
for variation in placeholder_variations:
|
| 921 |
-
replacement_blocks.append(f"""{SEARCH_START}
|
| 922 |
-
{variation}
|
| 923 |
-
{DIVIDER}
|
| 924 |
-
{generated_image}
|
| 925 |
-
{REPLACE_END}""")
|
| 926 |
-
else:
|
| 927 |
-
# Add new image if we have more generated images than placeholders
|
| 928 |
-
# Find a good insertion point (after body tag or main content)
|
| 929 |
-
if '<body' in html_content:
|
| 930 |
-
body_end = html_content.find('>', html_content.find('<body')) + 1
|
| 931 |
-
insertion_point = html_content[:body_end] + '\n '
|
| 932 |
-
replacement_blocks.append(f"""{SEARCH_START}
|
| 933 |
-
{insertion_point}
|
| 934 |
-
{DIVIDER}
|
| 935 |
-
{insertion_point}
|
| 936 |
-
{generated_image}
|
| 937 |
-
{REPLACE_END}""")
|
| 938 |
|
| 939 |
-
|
| 940 |
-
|
| 941 |
-
|
| 942 |
-
|
| 943 |
-
|
| 944 |
-
|
| 945 |
-
|
| 946 |
-
|
| 947 |
-
|
| 948 |
-
# Detect placeholders similarly to the multi-image version
|
| 949 |
-
placeholder_patterns = [
|
| 950 |
-
r'<img[^>]*src=["\'](?:placeholder|dummy|sample|example)[^"\']*["\'][^>]*>',
|
| 951 |
-
r'<img[^>]*src=["\']https?://via\.placeholder\.com[^"\']*["\'][^>]*>',
|
| 952 |
-
r'<img[^>]*src=["\']https?://picsum\.photos[^"\']*["\'][^>]*>',
|
| 953 |
-
r'<img[^>]*src=["\']https?://dummyimage\.com[^"\']*["\'][^>]*>',
|
| 954 |
-
r'<img[^>]*alt=["\'][^"\']*placeholder[^"\']*["\'][^>]*>',
|
| 955 |
-
r'<img[^>]*class=["\'][^"\']*placeholder[^"\']*["\'][^>]*>',
|
| 956 |
-
r'<img[^>]*id=["\'][^"\']*placeholder[^"\']*["\'][^>]*>',
|
| 957 |
-
r'<img[^>]*src=["\']data:image[^"\']*["\'][^>]*>',
|
| 958 |
-
r'<img[^>]*src=["\']#["\'][^>]*>',
|
| 959 |
-
r'<img[^>]*src=["\']about:blank["\'][^>]*>',
|
| 960 |
-
]
|
| 961 |
-
|
| 962 |
-
placeholder_images = []
|
| 963 |
-
for pattern in placeholder_patterns:
|
| 964 |
-
matches = re.findall(pattern, html_content, re.IGNORECASE)
|
| 965 |
-
if matches:
|
| 966 |
-
placeholder_images.extend(matches)
|
| 967 |
|
| 968 |
-
|
| 969 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 970 |
|
| 971 |
-
|
| 972 |
-
|
| 973 |
-
|
| 974 |
-
|
| 975 |
-
|
| 976 |
-
|
| 977 |
-
|
| 978 |
-
|
| 979 |
-
|
| 980 |
-
|
| 981 |
-
|
| 982 |
-
|
| 983 |
-
|
| 984 |
-
|
| 985 |
-
|
| 986 |
-
|
| 987 |
-
|
| 988 |
-
|
| 989 |
-
|
| 990 |
-
|
| 991 |
-
|
| 992 |
-
|
| 993 |
-
|
| 994 |
-
|
| 995 |
-
|
| 996 |
-
|
| 997 |
-
|
| 998 |
-
|
| 999 |
-
|
| 1000 |
-
|
| 1001 |
-
|
| 1002 |
-
|
| 1003 |
-
|
| 1004 |
-
# Otherwise insert after <body>
|
| 1005 |
-
if '<body' in html_content:
|
| 1006 |
-
body_end = html_content.find('>', html_content.find('<body')) + 1
|
| 1007 |
-
insertion_point = html_content[:body_end] + '\n '
|
| 1008 |
-
return f"""{SEARCH_START}
|
| 1009 |
-
{insertion_point}
|
| 1010 |
-
{DIVIDER}
|
| 1011 |
-
{insertion_point}
|
| 1012 |
-
{image_html}
|
| 1013 |
-
{REPLACE_END}"""
|
| 1014 |
-
|
| 1015 |
-
# If no <body>, just append
|
| 1016 |
-
return f"{SEARCH_START}\n\n{DIVIDER}\n{image_html}\n{REPLACE_END}"
|
| 1017 |
-
|
| 1018 |
-
def create_video_replacement_blocks_text_to_video(html_content: str, prompt: str, session_id: Optional[str] = None) -> str:
|
| 1019 |
-
"""Create search/replace blocks that generate and insert ONLY ONE text-to-video result."""
|
| 1020 |
-
if not prompt or not prompt.strip():
|
| 1021 |
-
return ""
|
| 1022 |
-
|
| 1023 |
-
import re
|
| 1024 |
-
|
| 1025 |
-
# Detect the same placeholders as image counterparts, to replace the first image slot with a video
|
| 1026 |
-
placeholder_patterns = [
|
| 1027 |
-
r'<img[^>]*src=["\'](?:placeholder|dummy|sample|example)[^"\']*["\'][^>]*>',
|
| 1028 |
-
r'<img[^>]*src=["\']https?://via\.placeholder\.com[^"\']*["\'][^>]*>',
|
| 1029 |
-
r'<img[^>]*src=["\']https?://picsum\.photos[^"\']*["\'][^>]*>',
|
| 1030 |
-
r'<img[^>]*src=["\']https?://dummyimage\.com[^"\']*["\'][^>]*>',
|
| 1031 |
-
r'<img[^>]*alt=["\'][^"\']*placeholder[^"\']*["\'][^>]*>',
|
| 1032 |
-
r'<img[^>]*class=["\'][^"\']*placeholder[^"\']*["\'][^>]*>',
|
| 1033 |
-
r'<img[^>]*id=["\'][^"\']*placeholder[^"\']*["\'][^>]*>',
|
| 1034 |
-
r'<img[^>]*src=["\']data:image[^"\']*["\'][^>]*>',
|
| 1035 |
-
r'<img[^>]*src=["\']#["\'][^>]*>',
|
| 1036 |
-
r'<img[^>]*src=["\']about:blank["\'][^>]*>',
|
| 1037 |
-
]
|
| 1038 |
-
|
| 1039 |
-
placeholder_images = []
|
| 1040 |
-
for pattern in placeholder_patterns:
|
| 1041 |
-
matches = re.findall(pattern, html_content, re.IGNORECASE)
|
| 1042 |
-
if matches:
|
| 1043 |
-
placeholder_images.extend(matches)
|
| 1044 |
-
|
| 1045 |
-
# Filter out HF URLs from placeholders (they are real generated content)
|
| 1046 |
-
placeholder_images = [img for img in placeholder_images if 'huggingface.co/datasets/' not in img]
|
| 1047 |
-
|
| 1048 |
-
if not placeholder_images:
|
| 1049 |
-
img_pattern = r'<img[^>]*>'
|
| 1050 |
-
placeholder_images = re.findall(img_pattern, html_content)
|
| 1051 |
-
|
| 1052 |
-
video_html = generate_video_from_text(prompt, session_id=session_id, token=None) # TODO: Pass token from parent context
|
| 1053 |
-
if video_html.startswith("Error"):
|
| 1054 |
-
return ""
|
| 1055 |
-
|
| 1056 |
-
# Replace first placeholder if present
|
| 1057 |
-
if placeholder_images:
|
| 1058 |
-
placeholder = placeholder_images[0]
|
| 1059 |
-
placeholder_clean = re.sub(r'\s+', ' ', placeholder.strip())
|
| 1060 |
-
placeholder_variations = [
|
| 1061 |
-
placeholder,
|
| 1062 |
-
placeholder_clean,
|
| 1063 |
-
placeholder_clean.replace('"', "'"),
|
| 1064 |
-
placeholder_clean.replace("'", '"'),
|
| 1065 |
-
re.sub(r'\s+', ' ', placeholder_clean),
|
| 1066 |
-
placeholder_clean.replace(' ', ' '),
|
| 1067 |
-
]
|
| 1068 |
-
blocks = []
|
| 1069 |
-
for variation in placeholder_variations:
|
| 1070 |
-
blocks.append(f"""{SEARCH_START}
|
| 1071 |
-
{variation}
|
| 1072 |
-
{DIVIDER}
|
| 1073 |
-
{video_html}
|
| 1074 |
-
{REPLACE_END}""")
|
| 1075 |
-
return '\n\n'.join(blocks)
|
| 1076 |
-
|
| 1077 |
-
# Otherwise insert after <body> with proper container
|
| 1078 |
-
if '<body' in html_content:
|
| 1079 |
-
body_start = html_content.find('<body')
|
| 1080 |
-
body_end = html_content.find('>', body_start) + 1
|
| 1081 |
-
opening_body_tag = html_content[body_start:body_end]
|
| 1082 |
-
|
| 1083 |
-
# Look for existing container elements to insert into
|
| 1084 |
-
body_content_start = body_end
|
| 1085 |
-
|
| 1086 |
-
# Try to find a good insertion point within existing content structure
|
| 1087 |
-
patterns_to_try = [
|
| 1088 |
-
r'<main[^>]*>',
|
| 1089 |
-
r'<section[^>]*class="[^"]*hero[^"]*"[^>]*>',
|
| 1090 |
-
r'<div[^>]*class="[^"]*container[^"]*"[^>]*>',
|
| 1091 |
-
r'<header[^>]*>',
|
| 1092 |
-
]
|
| 1093 |
-
|
| 1094 |
-
insertion_point = None
|
| 1095 |
-
for pattern in patterns_to_try:
|
| 1096 |
-
import re
|
| 1097 |
-
match = re.search(pattern, html_content[body_content_start:], re.IGNORECASE)
|
| 1098 |
-
if match:
|
| 1099 |
-
match_end = body_content_start + match.end()
|
| 1100 |
-
# Find the end of this tag
|
| 1101 |
-
tag_content = html_content[body_content_start + match.start():match_end]
|
| 1102 |
-
insertion_point = html_content[:match_end] + '\n '
|
| 1103 |
-
break
|
| 1104 |
-
|
| 1105 |
-
if not insertion_point:
|
| 1106 |
-
# Fallback to right after body tag with container div
|
| 1107 |
-
insertion_point = html_content[:body_end] + '\n '
|
| 1108 |
-
video_with_container = f'<div class="video-container" style="margin: 20px 0; text-align: center;">\n {video_html}\n </div>'
|
| 1109 |
-
return f"""{SEARCH_START}
|
| 1110 |
-
{insertion_point}
|
| 1111 |
-
{DIVIDER}
|
| 1112 |
-
{insertion_point}
|
| 1113 |
-
{video_with_container}
|
| 1114 |
-
{REPLACE_END}"""
|
| 1115 |
-
else:
|
| 1116 |
-
return f"""{SEARCH_START}
|
| 1117 |
-
{insertion_point}
|
| 1118 |
-
{DIVIDER}
|
| 1119 |
-
{insertion_point}
|
| 1120 |
-
{video_html}
|
| 1121 |
-
{REPLACE_END}"""
|
| 1122 |
-
|
| 1123 |
-
# If no <body>, just append
|
| 1124 |
-
return f"{SEARCH_START}\n\n{DIVIDER}\n{video_html}\n{REPLACE_END}"
|
| 1125 |
-
|
| 1126 |
-
def create_music_replacement_blocks_text_to_music(html_content: str, prompt: str, session_id: Optional[str] = None) -> str:
|
| 1127 |
-
"""Create search/replace blocks that insert ONE generated <audio> near the top of <body>."""
|
| 1128 |
-
if not prompt or not prompt.strip():
|
| 1129 |
-
return ""
|
| 1130 |
-
|
| 1131 |
-
audio_html = generate_music_from_text(prompt, session_id=session_id, token=None) # TODO: Pass token from parent context
|
| 1132 |
-
if audio_html.startswith("Error"):
|
| 1133 |
-
return ""
|
| 1134 |
-
|
| 1135 |
-
# Prefer inserting after the first <section>...</section> if present; else after <body>
|
| 1136 |
-
import re
|
| 1137 |
-
section_match = re.search(r"<section\b[\s\S]*?</section>", html_content, flags=re.IGNORECASE)
|
| 1138 |
-
if section_match:
|
| 1139 |
-
section_html = section_match.group(0)
|
| 1140 |
-
section_clean = re.sub(r"\s+", " ", section_html.strip())
|
| 1141 |
-
variations = [
|
| 1142 |
-
section_html,
|
| 1143 |
-
section_clean,
|
| 1144 |
-
section_clean.replace('"', "'"),
|
| 1145 |
-
section_clean.replace("'", '"'),
|
| 1146 |
-
re.sub(r"\s+", " ", section_clean),
|
| 1147 |
-
]
|
| 1148 |
-
blocks = []
|
| 1149 |
-
for v in variations:
|
| 1150 |
-
blocks.append(f"""{SEARCH_START}
|
| 1151 |
-
{v}
|
| 1152 |
-
{DIVIDER}
|
| 1153 |
-
{v}\n {audio_html}
|
| 1154 |
-
{REPLACE_END}""")
|
| 1155 |
-
return "\n\n".join(blocks)
|
| 1156 |
-
if '<body' in html_content:
|
| 1157 |
-
body_end = html_content.find('>', html_content.find('<body')) + 1
|
| 1158 |
-
insertion_point = html_content[:body_end] + '\n '
|
| 1159 |
-
return f"""{SEARCH_START}
|
| 1160 |
-
{insertion_point}
|
| 1161 |
-
{DIVIDER}
|
| 1162 |
-
{insertion_point}
|
| 1163 |
-
{audio_html}
|
| 1164 |
-
{REPLACE_END}"""
|
| 1165 |
-
|
| 1166 |
-
# If no <body>, just append
|
| 1167 |
-
return f"{SEARCH_START}\n\n{DIVIDER}\n{audio_html}\n{REPLACE_END}"
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Media generation functions for images, videos, and music using various AI models.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
import os
|
| 6 |
+
import io
|
| 7 |
import base64
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
import requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
import tempfile
|
| 10 |
+
from typing import Optional, Dict, Any
|
| 11 |
+
from PIL import Image
|
| 12 |
+
import numpy as np
|
|
|
|
|
|
|
| 13 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
from huggingface_hub import InferenceClient
|
| 16 |
+
from utils import create_temp_media_url, compress_media_for_data_uri, validate_video_html
|
| 17 |
+
from config import HF_TOKEN
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
+
class MediaGenerator:
|
| 20 |
+
"""Handles generation of images, videos, and music"""
|
| 21 |
+
|
| 22 |
+
def __init__(self):
|
| 23 |
+
self.hf_client = None
|
| 24 |
+
if HF_TOKEN:
|
| 25 |
+
self.hf_client = InferenceClient(
|
| 26 |
+
provider="auto",
|
| 27 |
+
api_key=HF_TOKEN,
|
| 28 |
+
bill_to="huggingface"
|
| 29 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
def generate_image_with_qwen(self, prompt: str, image_index: int = 0,
|
| 32 |
+
token: Optional[gr.OAuthToken] = None) -> str:
|
| 33 |
+
"""Generate image using Qwen image model"""
|
| 34 |
try:
|
| 35 |
+
if not self.hf_client:
|
| 36 |
+
return "Error: HF_TOKEN environment variable is not set."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
print(f"[ImageGen] Generating image with prompt: {prompt}")
|
| 39 |
+
|
| 40 |
+
# Generate image using Qwen/Qwen-Image model
|
| 41 |
+
image = self.hf_client.text_to_image(
|
| 42 |
+
prompt,
|
| 43 |
+
model="Qwen/Qwen-Image",
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
# Resize image to reduce size while maintaining quality
|
| 47 |
+
max_size = 1024
|
| 48 |
+
if image.width > max_size or image.height > max_size:
|
| 49 |
+
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
|
| 50 |
+
|
| 51 |
+
# Convert to bytes
|
| 52 |
+
buffer = io.BytesIO()
|
| 53 |
+
image.convert('RGB').save(buffer, format='JPEG', quality=90, optimize=True)
|
| 54 |
+
image_bytes = buffer.getvalue()
|
| 55 |
+
|
| 56 |
+
# Create temporary URL
|
| 57 |
+
filename = f"generated_image_{image_index}.jpg"
|
| 58 |
+
temp_url = self._upload_media_to_hf(image_bytes, filename, "image", token, use_temp=True)
|
| 59 |
+
|
| 60 |
+
if temp_url.startswith("Error"):
|
| 61 |
+
return temp_url
|
| 62 |
+
|
| 63 |
+
return f'<img src="{temp_url}" alt="{prompt}" style="max-width: 100%; height: auto; border-radius: 8px; margin: 10px 0;" loading="lazy" />'
|
| 64 |
+
|
| 65 |
+
except Exception as e:
|
| 66 |
+
print(f"Image generation error: {str(e)}")
|
| 67 |
+
return f"Error generating image: {str(e)}"
|
| 68 |
+
|
| 69 |
+
def generate_image_to_image(self, input_image_data, prompt: str,
|
| 70 |
+
token: Optional[gr.OAuthToken] = None) -> str:
|
| 71 |
+
"""Generate image using image-to-image with Qwen-Image-Edit"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
try:
|
| 73 |
+
if not self.hf_client:
|
| 74 |
+
return "Error: HF_TOKEN environment variable is not set."
|
| 75 |
+
|
| 76 |
+
print(f"[Image2Image] Processing with prompt: {prompt}")
|
| 77 |
+
|
| 78 |
+
# Normalize input image to bytes
|
| 79 |
+
pil_image = self._process_input_image(input_image_data)
|
| 80 |
+
|
| 81 |
+
# Resize input image to avoid request body size limits
|
| 82 |
+
max_input_size = 1024
|
| 83 |
+
if pil_image.width > max_input_size or pil_image.height > max_input_size:
|
| 84 |
+
pil_image.thumbnail((max_input_size, max_input_size), Image.Resampling.LANCZOS)
|
| 85 |
+
|
| 86 |
+
# Convert to bytes
|
| 87 |
+
buf = io.BytesIO()
|
| 88 |
+
pil_image.save(buf, format='JPEG', quality=85, optimize=True)
|
| 89 |
+
input_bytes = buf.getvalue()
|
| 90 |
+
|
| 91 |
+
# Call image-to-image
|
| 92 |
+
image = self.hf_client.image_to_image(
|
| 93 |
+
input_bytes,
|
| 94 |
+
prompt=prompt,
|
| 95 |
+
model="Qwen/Qwen-Image-Edit",
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
# Resize and optimize output
|
| 99 |
+
max_size = 1024
|
| 100 |
+
if image.width > max_size or image.height > max_size:
|
| 101 |
+
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
|
| 102 |
+
|
| 103 |
+
out_buf = io.BytesIO()
|
| 104 |
+
image.convert('RGB').save(out_buf, format='JPEG', quality=90, optimize=True)
|
| 105 |
+
image_bytes = out_buf.getvalue()
|
| 106 |
+
|
| 107 |
+
# Create temporary URL
|
| 108 |
+
filename = "image_to_image_result.jpg"
|
| 109 |
+
temp_url = self._upload_media_to_hf(image_bytes, filename, "image", token, use_temp=True)
|
| 110 |
+
|
| 111 |
+
if temp_url.startswith("Error"):
|
| 112 |
+
return temp_url
|
| 113 |
+
|
| 114 |
+
return f'<img src="{temp_url}" alt="{prompt}" style="max-width: 100%; height: auto; border-radius: 8px; margin: 10px 0;" loading="lazy" />'
|
| 115 |
+
|
| 116 |
except Exception as e:
|
| 117 |
+
print(f"Image-to-image generation error: {str(e)}")
|
| 118 |
+
return f"Error generating image (image-to-image): {str(e)}"
|
| 119 |
+
|
| 120 |
+
def generate_video_from_image(self, input_image_data, prompt: str,
|
| 121 |
+
session_id: Optional[str] = None,
|
| 122 |
+
token: Optional[gr.OAuthToken] = None) -> str:
|
| 123 |
+
"""Generate video from input image using Lightricks LTX-Video"""
|
| 124 |
try:
|
| 125 |
+
print("[Image2Video] Starting video generation")
|
| 126 |
+
if not self.hf_client:
|
| 127 |
+
return "Error: HF_TOKEN environment variable is not set."
|
| 128 |
+
|
| 129 |
+
# Process input image
|
| 130 |
+
pil_image = self._process_input_image(input_image_data)
|
| 131 |
+
print(f"[Image2Video] Input image size: {pil_image.size}")
|
| 132 |
+
|
| 133 |
+
# Compress image for API limits
|
| 134 |
+
input_bytes = self._compress_image_for_video(pil_image, max_size_mb=3.9)
|
| 135 |
+
|
| 136 |
+
# Check for image-to-video method
|
| 137 |
+
image_to_video_method = getattr(self.hf_client, "image_to_video", None)
|
| 138 |
+
if not callable(image_to_video_method):
|
| 139 |
+
return ("Error: Your huggingface_hub version does not support image_to_video. "
|
| 140 |
+
"Please upgrade with `pip install -U huggingface_hub`")
|
| 141 |
+
|
| 142 |
+
model_id = "Lightricks/LTX-Video-0.9.8-13B-distilled"
|
| 143 |
+
print(f"[Image2Video] Calling API with model: {model_id}")
|
| 144 |
+
|
| 145 |
+
video_bytes = image_to_video_method(
|
| 146 |
+
input_bytes,
|
| 147 |
+
prompt=prompt,
|
| 148 |
+
model=model_id,
|
| 149 |
)
|
| 150 |
+
|
| 151 |
+
print(f"[Image2Video] Received video bytes: {len(video_bytes) if hasattr(video_bytes, '__len__') else 'unknown'}")
|
| 152 |
+
|
| 153 |
+
# Create temporary URL
|
| 154 |
+
filename = "image_to_video_result.mp4"
|
| 155 |
+
temp_url = self._upload_media_to_hf(video_bytes, filename, "video", token, use_temp=True)
|
| 156 |
+
|
| 157 |
+
if temp_url.startswith("Error"):
|
| 158 |
+
return temp_url
|
| 159 |
+
|
| 160 |
+
video_html = self._create_video_html(temp_url)
|
| 161 |
+
|
| 162 |
+
if not validate_video_html(video_html):
|
| 163 |
+
return "Error: Generated video HTML is malformed"
|
| 164 |
+
|
| 165 |
+
print(f"[Image2Video] Successfully generated video: {temp_url}")
|
| 166 |
+
return video_html
|
| 167 |
+
|
| 168 |
except Exception as e:
|
| 169 |
+
print(f"[Image2Video] Error: {str(e)}")
|
| 170 |
+
return f"Error generating video (image-to-video): {str(e)}"
|
| 171 |
+
|
| 172 |
+
def generate_video_from_text(self, prompt: str, session_id: Optional[str] = None,
|
| 173 |
+
token: Optional[gr.OAuthToken] = None) -> str:
|
| 174 |
+
"""Generate video from text prompt using Wan-AI text-to-video model"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
try:
|
| 176 |
+
print("[Text2Video] Starting video generation")
|
| 177 |
+
if not self.hf_client:
|
| 178 |
+
return "Error: HF_TOKEN environment variable is not set."
|
| 179 |
+
|
| 180 |
+
# Check for text-to-video method
|
| 181 |
+
text_to_video_method = getattr(self.hf_client, "text_to_video", None)
|
| 182 |
+
if not callable(text_to_video_method):
|
| 183 |
+
return ("Error: Your huggingface_hub version does not support text_to_video. "
|
| 184 |
+
"Please upgrade with `pip install -U huggingface_hub`")
|
| 185 |
+
|
| 186 |
+
model_id = "Wan-AI/Wan2.2-T2V-A14B"
|
| 187 |
+
prompt_str = (prompt or "").strip()
|
| 188 |
+
print(f"[Text2Video] Using model: {model_id}, prompt length: {len(prompt_str)}")
|
| 189 |
+
|
| 190 |
+
video_bytes = text_to_video_method(
|
| 191 |
+
prompt_str,
|
| 192 |
+
model=model_id,
|
| 193 |
)
|
| 194 |
|
| 195 |
+
print(f"[Text2Video] Received video bytes: {len(video_bytes) if hasattr(video_bytes, '__len__') else 'unknown'}")
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
+
# Create temporary URL
|
| 198 |
+
filename = "text_to_video_result.mp4"
|
| 199 |
+
temp_url = self._upload_media_to_hf(video_bytes, filename, "video", token, use_temp=True)
|
| 200 |
+
|
| 201 |
+
if temp_url.startswith("Error"):
|
| 202 |
+
return temp_url
|
| 203 |
+
|
| 204 |
+
video_html = self._create_video_html(temp_url)
|
| 205 |
+
|
| 206 |
+
if not validate_video_html(video_html):
|
| 207 |
+
return "Error: Generated video HTML is malformed"
|
| 208 |
+
|
| 209 |
+
print(f"[Text2Video] Successfully generated video: {temp_url}")
|
| 210 |
+
return video_html
|
| 211 |
+
|
| 212 |
+
except Exception as e:
|
| 213 |
+
print(f"[Text2Video] Error: {str(e)}")
|
| 214 |
+
return f"Error generating video (text-to-video): {str(e)}"
|
| 215 |
+
|
| 216 |
+
def generate_music_from_text(self, prompt: str, music_length_ms: int = 30000,
|
| 217 |
+
session_id: Optional[str] = None,
|
| 218 |
+
token: Optional[gr.OAuthToken] = None) -> str:
|
| 219 |
+
"""Generate music using ElevenLabs Music API"""
|
| 220 |
+
try:
|
| 221 |
+
api_key = os.getenv('ELEVENLABS_API_KEY')
|
| 222 |
+
if not api_key:
|
| 223 |
+
return "Error: ELEVENLABS_API_KEY environment variable is not set."
|
| 224 |
+
|
| 225 |
+
print(f"[MusicGen] Generating music: {prompt}")
|
| 226 |
+
|
| 227 |
+
headers = {
|
| 228 |
+
'Content-Type': 'application/json',
|
| 229 |
+
'xi-api-key': api_key,
|
| 230 |
+
}
|
| 231 |
+
|
| 232 |
+
payload = {
|
| 233 |
+
'prompt': prompt or 'Epic orchestral theme with soaring strings and powerful brass',
|
| 234 |
+
'music_length_ms': int(music_length_ms) if music_length_ms else 30000,
|
| 235 |
+
}
|
| 236 |
+
|
| 237 |
+
resp = requests.post(
|
| 238 |
+
'https://api.elevenlabs.io/v1/music/compose',
|
| 239 |
+
headers=headers,
|
| 240 |
+
json=payload,
|
| 241 |
+
timeout=60
|
| 242 |
+
)
|
| 243 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
try:
|
| 245 |
+
resp.raise_for_status()
|
|
|
|
|
|
|
| 246 |
except Exception as e:
|
| 247 |
+
error_text = getattr(e, 'response', resp).text if hasattr(e, 'response') else resp.text
|
| 248 |
+
return f"Error generating music: {error_text}"
|
| 249 |
+
|
| 250 |
+
# Create temporary URL
|
| 251 |
+
filename = "generated_music.mp3"
|
| 252 |
+
temp_url = self._upload_media_to_hf(resp.content, filename, "audio", token, use_temp=True)
|
| 253 |
+
|
| 254 |
+
if temp_url.startswith("Error"):
|
| 255 |
+
return temp_url
|
| 256 |
+
|
| 257 |
+
audio_html = self._create_audio_html(temp_url)
|
| 258 |
+
print(f"[MusicGen] Successfully generated music: {temp_url}")
|
| 259 |
+
return audio_html
|
| 260 |
+
|
| 261 |
+
except Exception as e:
|
| 262 |
+
print(f"[MusicGen] Error: {str(e)}")
|
| 263 |
+
return f"Error generating music: {str(e)}"
|
| 264 |
+
|
| 265 |
+
def _process_input_image(self, input_image_data) -> Image.Image:
|
| 266 |
+
"""Convert various image formats to PIL Image"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
if hasattr(input_image_data, 'read'):
|
|
|
|
| 268 |
raw = input_image_data.read()
|
| 269 |
pil_image = Image.open(io.BytesIO(raw))
|
| 270 |
elif hasattr(input_image_data, 'mode') and hasattr(input_image_data, 'size'):
|
|
|
|
| 271 |
pil_image = input_image_data
|
| 272 |
+
elif isinstance(input_image_data, np.ndarray):
|
| 273 |
pil_image = Image.fromarray(input_image_data)
|
| 274 |
elif isinstance(input_image_data, (bytes, bytearray)):
|
| 275 |
pil_image = Image.open(io.BytesIO(input_image_data))
|
| 276 |
else:
|
|
|
|
| 277 |
pil_image = Image.open(io.BytesIO(bytes(input_image_data)))
|
| 278 |
+
|
| 279 |
# Ensure RGB
|
| 280 |
if pil_image.mode != 'RGB':
|
| 281 |
pil_image = pil_image.convert('RGB')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
|
| 283 |
+
return pil_image
|
| 284 |
+
|
| 285 |
+
def _compress_image_for_video(self, pil_image: Image.Image, max_size_mb: float = 3.9) -> bytes:
|
| 286 |
+
"""Compress image for video generation API limits"""
|
| 287 |
+
MAX_BYTES = int(max_size_mb * 1024 * 1024)
|
| 288 |
+
max_dim = 1024
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 289 |
quality = 90
|
| 290 |
+
|
| 291 |
def encode_current(pil: Image.Image, q: int) -> bytes:
|
| 292 |
tmp = io.BytesIO()
|
| 293 |
pil.save(tmp, format='JPEG', quality=q, optimize=True)
|
| 294 |
return tmp.getvalue()
|
| 295 |
+
|
| 296 |
+
# Downscale while too large
|
| 297 |
while max(pil_image.size) > max_dim:
|
| 298 |
ratio = max_dim / float(max(pil_image.size))
|
| 299 |
new_size = (max(1, int(pil_image.size[0] * ratio)), max(1, int(pil_image.size[1] * ratio)))
|
| 300 |
pil_image = pil_image.resize(new_size, Image.Resampling.LANCZOS)
|
| 301 |
+
|
| 302 |
encoded = encode_current(pil_image, quality)
|
| 303 |
+
|
| 304 |
+
# Reduce quality or dimensions if still too large
|
| 305 |
while len(encoded) > MAX_BYTES and (quality > 40 or max(pil_image.size) > 640):
|
| 306 |
if quality > 40:
|
| 307 |
quality -= 10
|
| 308 |
else:
|
|
|
|
| 309 |
new_w = max(1, int(pil_image.size[0] * 0.85))
|
| 310 |
new_h = max(1, int(pil_image.size[1] * 0.85))
|
| 311 |
pil_image = pil_image.resize((new_w, new_h), Image.Resampling.LANCZOS)
|
| 312 |
encoded = encode_current(pil_image, quality)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 313 |
|
| 314 |
+
return encoded
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 315 |
|
| 316 |
+
def _upload_media_to_hf(self, media_bytes: bytes, filename: str, media_type: str,
|
| 317 |
+
token: Optional[gr.OAuthToken] = None, use_temp: bool = True) -> str:
|
| 318 |
+
"""Upload media to HF or create temporary file"""
|
| 319 |
+
if use_temp:
|
| 320 |
+
return create_temp_media_url(media_bytes, filename, media_type)
|
| 321 |
+
|
| 322 |
+
# HF upload logic would go here for permanent URLs
|
| 323 |
+
# For now, always use temp files
|
| 324 |
+
return create_temp_media_url(media_bytes, filename, media_type)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
|
| 326 |
+
def _create_video_html(self, video_url: str) -> str:
|
| 327 |
+
"""Create HTML video element"""
|
| 328 |
+
return f'''<video controls autoplay muted loop playsinline
|
| 329 |
+
style="max-width: 100%; height: auto; border-radius: 8px; margin: 10px 0; display: block;"
|
| 330 |
+
onloadstart="this.style.backgroundColor='#f0f0f0'"
|
| 331 |
+
onerror="this.style.display='none'; console.error('Video failed to load')">
|
| 332 |
+
<source src="{video_url}" type="video/mp4" />
|
| 333 |
+
<p style="text-align: center; color: #666;">Your browser does not support the video tag.</p>
|
| 334 |
+
</video>'''
|
| 335 |
|
| 336 |
+
def _create_audio_html(self, audio_url: str) -> str:
|
| 337 |
+
"""Create HTML audio player"""
|
| 338 |
+
return f'''<div class="anycoder-music" style="max-width:420px;margin:16px auto;padding:12px 16px;border:1px solid #e5e7eb;border-radius:12px;background:linear-gradient(180deg,#fafafa,#f3f4f6);box-shadow:0 2px 8px rgba(0,0,0,0.06)">
|
| 339 |
+
<div style="font-size:13px;color:#374151;margin-bottom:8px;display:flex;align-items:center;gap:6px">
|
| 340 |
+
<span>🎵 Generated music</span>
|
| 341 |
+
</div>
|
| 342 |
+
<audio controls autoplay loop style="width:100%;outline:none;">
|
| 343 |
+
<source src="{audio_url}" type="audio/mpeg" />
|
| 344 |
+
Your browser does not support the audio element.
|
| 345 |
+
</audio>
|
| 346 |
+
</div>'''
|
| 347 |
+
|
| 348 |
+
# Global media generator instance
|
| 349 |
+
media_generator = MediaGenerator()
|
| 350 |
+
|
| 351 |
+
# Export main functions
|
| 352 |
+
def generate_image_with_qwen(prompt: str, image_index: int = 0, token: Optional[gr.OAuthToken] = None) -> str:
|
| 353 |
+
return media_generator.generate_image_with_qwen(prompt, image_index, token)
|
| 354 |
+
|
| 355 |
+
def generate_image_to_image(input_image_data, prompt: str, token: Optional[gr.OAuthToken] = None) -> str:
|
| 356 |
+
return media_generator.generate_image_to_image(input_image_data, prompt, token)
|
| 357 |
+
|
| 358 |
+
def generate_video_from_image(input_image_data, prompt: str, session_id: Optional[str] = None,
|
| 359 |
+
token: Optional[gr.OAuthToken] = None) -> str:
|
| 360 |
+
return media_generator.generate_video_from_image(input_image_data, prompt, session_id, token)
|
| 361 |
+
|
| 362 |
+
def generate_video_from_text(prompt: str, session_id: Optional[str] = None,
|
| 363 |
+
token: Optional[gr.OAuthToken] = None) -> str:
|
| 364 |
+
return media_generator.generate_video_from_text(prompt, session_id, token)
|
| 365 |
+
|
| 366 |
+
def generate_music_from_text(prompt: str, music_length_ms: int = 30000, session_id: Optional[str] = None,
|
| 367 |
+
token: Optional[gr.OAuthToken] = None) -> str:
|
| 368 |
+
return media_generator.generate_music_from_text(prompt, music_length_ms, session_id, token)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|