Spaces:
Runtime error
Runtime error
Commit
·
eaaab0d
1
Parent(s):
5aa316f
fix app
Browse files
README.md
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
---
|
| 2 |
title: FeatUp
|
| 3 |
emoji: 👣⬆️
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: docker
|
| 7 |
pinned: false
|
| 8 |
---
|
|
|
|
| 1 |
---
|
| 2 |
title: FeatUp
|
| 3 |
emoji: 👣⬆️
|
| 4 |
+
colorFrom: pink
|
| 5 |
+
colorTo: yellow
|
| 6 |
sdk: docker
|
| 7 |
pinned: false
|
| 8 |
---
|
app.py
CHANGED
|
@@ -11,30 +11,80 @@ import os
|
|
| 11 |
def plot_feats(image, lr, hr):
|
| 12 |
assert len(image.shape) == len(lr.shape) == len(hr.shape) == 3
|
| 13 |
seed_everything(0)
|
| 14 |
-
[lr_feats_pca, hr_feats_pca], _ = pca([lr.unsqueeze(0), hr.unsqueeze(0)])
|
| 15 |
-
fig, ax = plt.subplots(
|
| 16 |
-
ax[0].imshow(image.permute(1, 2, 0).detach().cpu())
|
| 17 |
-
ax[0].
|
| 18 |
-
ax[
|
| 19 |
-
|
| 20 |
-
ax[
|
| 21 |
-
ax[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
remove_axes(ax)
|
| 23 |
plt.tight_layout()
|
| 24 |
plt.close(fig) # Close plt to avoid additional empty plots
|
| 25 |
return fig
|
| 26 |
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
if __name__ == "__main__":
|
| 31 |
os.environ['TORCH_HOME'] = '/tmp/.cache'
|
| 32 |
|
| 33 |
-
options = ['dino16','vit', 'dinov2', 'clip', 'resnet50']
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
model_option = gr.Radio(options, value="dino16", label='Choose a backbone to upsample')
|
| 36 |
|
| 37 |
-
models = {o:torch.hub.load("mhamilton723/FeatUp", o) for o in options}
|
|
|
|
| 38 |
|
| 39 |
def upsample_features(image, model_option):
|
| 40 |
# Image preprocessing
|
|
@@ -60,7 +110,13 @@ if __name__ == "__main__":
|
|
| 60 |
inputs=[image_input, model_option],
|
| 61 |
outputs="plot",
|
| 62 |
title="Feature Upsampling Demo",
|
| 63 |
-
description="This demo allows you to upsample features of an image using selected models."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
-
|
| 66 |
|
|
|
|
|
|
| 11 |
def plot_feats(image, lr, hr):
|
| 12 |
assert len(image.shape) == len(lr.shape) == len(hr.shape) == 3
|
| 13 |
seed_everything(0)
|
| 14 |
+
[lr_feats_pca, hr_feats_pca], _ = pca([lr.unsqueeze(0), hr.unsqueeze(0)], dim=9)
|
| 15 |
+
fig, ax = plt.subplots(3, 3, figsize=(15, 15))
|
| 16 |
+
ax[0, 0].imshow(image.permute(1, 2, 0).detach().cpu())
|
| 17 |
+
ax[1, 0].imshow(image.permute(1, 2, 0).detach().cpu())
|
| 18 |
+
ax[2, 0].imshow(image.permute(1, 2, 0).detach().cpu())
|
| 19 |
+
|
| 20 |
+
ax[0, 0].set_title("Image", fontsize=22)
|
| 21 |
+
ax[0, 1].set_title("Original", fontsize=22)
|
| 22 |
+
ax[0, 2].set_title("Upsampled Features", fontsize=22)
|
| 23 |
+
|
| 24 |
+
ax[0, 1].imshow(lr_feats_pca[0, :3].permute(1, 2, 0).detach().cpu())
|
| 25 |
+
ax[0, 0].set_ylabel("PCA Components 1-3", fontsize=22)
|
| 26 |
+
ax[0, 2].imshow(hr_feats_pca[0, :3].permute(1, 2, 0).detach().cpu())
|
| 27 |
+
|
| 28 |
+
ax[1, 1].imshow(lr_feats_pca[0, 3:6].permute(1, 2, 0).detach().cpu())
|
| 29 |
+
ax[1, 0].set_ylabel("PCA Components 4-6", fontsize=22)
|
| 30 |
+
ax[1, 2].imshow(hr_feats_pca[0, 3:6].permute(1, 2, 0).detach().cpu())
|
| 31 |
+
|
| 32 |
+
ax[2, 1].imshow(lr_feats_pca[0, 6:9].permute(1, 2, 0).detach().cpu())
|
| 33 |
+
ax[2, 0].set_ylabel("PCA Components 7-9", fontsize=22)
|
| 34 |
+
ax[2, 2].imshow(hr_feats_pca[0, 6:9].permute(1, 2, 0).detach().cpu())
|
| 35 |
+
|
| 36 |
remove_axes(ax)
|
| 37 |
plt.tight_layout()
|
| 38 |
plt.close(fig) # Close plt to avoid additional empty plots
|
| 39 |
return fig
|
| 40 |
|
| 41 |
|
| 42 |
+
if __name__ == "__main__":
|
| 43 |
+
import requests
|
| 44 |
+
import os
|
| 45 |
+
|
| 46 |
|
| 47 |
+
def download_image(url, save_path):
|
| 48 |
+
response = requests.get(url)
|
| 49 |
+
with open(save_path, 'wb') as file:
|
| 50 |
+
file.write(response.content)
|
| 51 |
+
|
| 52 |
+
base_url = "https://marhamilresearch4.blob.core.windows.net/feature-upsampling-public/sample_images/"
|
| 53 |
+
sample_images_urls = {
|
| 54 |
+
"skate.jpg": base_url + "skate.jpg",
|
| 55 |
+
"car.jpg": base_url + "car.jpg",
|
| 56 |
+
"plant.png": base_url + "plant.png",
|
| 57 |
+
}
|
| 58 |
+
|
| 59 |
+
sample_images_dir = "sample_images"
|
| 60 |
+
|
| 61 |
+
# Ensure the directory for sample images exists
|
| 62 |
+
os.makedirs(sample_images_dir, exist_ok=True)
|
| 63 |
+
|
| 64 |
+
# Download each sample image
|
| 65 |
+
for filename, url in sample_images_urls.items():
|
| 66 |
+
save_path = os.path.join(sample_images_dir, filename)
|
| 67 |
+
# Download the image if it doesn't already exist
|
| 68 |
+
if not os.path.exists(save_path):
|
| 69 |
+
print(f"Downloading {filename}...")
|
| 70 |
+
download_image(url, save_path)
|
| 71 |
+
else:
|
| 72 |
+
print(f"{filename} already exists. Skipping download.")
|
| 73 |
|
|
|
|
| 74 |
os.environ['TORCH_HOME'] = '/tmp/.cache'
|
| 75 |
|
| 76 |
+
options = ['dino16', 'vit', 'dinov2', 'clip', 'resnet50']
|
| 77 |
+
|
| 78 |
+
image_input = gr.Image(label="Choose an image to featurize",
|
| 79 |
+
height=480,
|
| 80 |
+
type="pil",
|
| 81 |
+
image_mode='RGB',
|
| 82 |
+
sources=['upload', 'webcam', 'clipboard']
|
| 83 |
+
)
|
| 84 |
model_option = gr.Radio(options, value="dino16", label='Choose a backbone to upsample')
|
| 85 |
|
| 86 |
+
models = {o: torch.hub.load("mhamilton723/FeatUp", o) for o in options}
|
| 87 |
+
|
| 88 |
|
| 89 |
def upsample_features(image, model_option):
|
| 90 |
# Image preprocessing
|
|
|
|
| 110 |
inputs=[image_input, model_option],
|
| 111 |
outputs="plot",
|
| 112 |
title="Feature Upsampling Demo",
|
| 113 |
+
description="This demo allows you to upsample features of an image using selected models.",
|
| 114 |
+
examples=[
|
| 115 |
+
["sample_images/skate.jpg", "dino16"],
|
| 116 |
+
["sample_images/car.jpg", "dinov2"],
|
| 117 |
+
["sample_images/plant.png", "dino16"],
|
| 118 |
+
]
|
| 119 |
|
| 120 |
+
)
|
| 121 |
|
| 122 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|