Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig | |
| import torch | |
| # Load your model and tokenizer using the adapter weights | |
| model_name = "mherrador/CE5.0_expert_v2" | |
| bnb_config = BitsAndBytesConfig( | |
| load_in_4bit=True, | |
| bnb_4bit_use_double_quant=True, | |
| bnb_4bit_quant_type="nf4", | |
| bnb_4bit_compute_dtype=torch.bfloat16, | |
| ) | |
| # Explicitly set device to CPU | |
| device = torch.device("cpu") | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| quantization_config=bnb_config, | |
| # device_map="auto", # Let Transformers choose the best device | |
| trust_remote_code=True, | |
| ).to(device) # Move model to the specified device | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| # Function to generate recommendations | |
| def generate_recommendations(input_text): | |
| inputs = tokenizer(input_text, return_tensors="pt").to(device) # Move input to device | |
| outputs = model.generate(**inputs, max_new_tokens=128) | |
| recommendations = tokenizer.batch_decode(outputs)[0] | |
| return recommendations | |
| # Create the Gradio interface | |
| iface = gr.Interface( | |
| fn=generate_recommendations, | |
| inputs=gr.Textbox(lines=5, placeholder="Enter your questions here..."), | |
| outputs=gr.Textbox(lines=10), | |
| title="Circular Economy Recommender", | |
| description="Enter your questions about circular economy practices to get recommendations.", | |
| ) | |
| # Launch the interface | |
| iface.launch() |