Spaces:
Runtime error
Runtime error
| import json | |
| import gzip | |
| import os | |
| import shutil | |
| import secrets | |
| import gradio as gr | |
| from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns | |
| import pandas as pd | |
| import numpy as np | |
| from apscheduler.schedulers.background import BackgroundScheduler | |
| from huggingface_hub import snapshot_download | |
| from io import StringIO | |
| from typing import Dict, List, Optional | |
| from dataclasses import dataclass, field | |
| from copy import deepcopy | |
| from src.about import ( | |
| CITATION_BUTTON_LABEL, | |
| CITATION_BUTTON_TEXT, | |
| EVALUATION_QUEUE_TEXT_SUBGRAPH, EVALUATION_QUEUE_TEXT_CAUSALVARIABLE, | |
| INTRODUCTION_TEXT, | |
| LLM_BENCHMARKS_TEXT, | |
| TITLE, | |
| ) | |
| from src.display.css_html_js import custom_css | |
| from src.display.utils import ( | |
| BENCHMARK_COLS_MIB_SUBGRAPH, | |
| COLS, | |
| COLS_MIB_SUBGRAPH, | |
| COLS_MULTIMODAL, | |
| EVAL_COLS, | |
| EVAL_TYPES, | |
| AutoEvalColumn, | |
| AutoEvalColumn_mib_subgraph, | |
| AutoEvalColumn_mib_causalgraph, | |
| fields, | |
| ) | |
| from src.envs import API, EVAL_REQUESTS_SUBGRAPH, EVAL_REQUESTS_CAUSALGRAPH, QUEUE_REPO_SUBGRAPH, QUEUE_REPO_CAUSALGRAPH, REPO_ID, TOKEN, RESULTS_REPO_MIB_SUBGRAPH, EVAL_RESULTS_MIB_SUBGRAPH_PATH, RESULTS_REPO_MIB_CAUSALGRAPH, EVAL_RESULTS_MIB_CAUSALGRAPH_PATH | |
| from src.populate import get_evaluation_queue_df, get_leaderboard_df_mib_subgraph, get_leaderboard_df_mib_causalgraph | |
| from src.submission.submit import upload_to_queue, remove_submission | |
| from src.submission.check_validity import verify_circuit_submission, verify_causal_variable_submission, check_rate_limit, parse_huggingface_url | |
| from src.about import TasksMib_Subgraph, TasksMib_Causalgraph | |
| from gradio_leaderboard import SelectColumns, Leaderboard | |
| import pandas as pd | |
| from typing import List, Dict, Optional | |
| from dataclasses import fields | |
| import math | |
| class SmartSelectColumns(SelectColumns): | |
| """ | |
| Enhanced SelectColumns component matching exact original parameters. | |
| """ | |
| def __init__( | |
| self, | |
| benchmark_keywords: Optional[List[str]] = None, | |
| model_keywords: Optional[List[str]] = None, | |
| initial_selected: Optional[List[str]] = None, | |
| label: Optional[str] = None, | |
| show_label: bool = True, | |
| info: Optional[str] = None, | |
| allow: bool = True | |
| ): | |
| # Match exact parameters from working SelectColumns | |
| super().__init__( | |
| default_selection=initial_selected or [], | |
| cant_deselect=[], | |
| allow=allow, | |
| label=label, | |
| show_label=show_label, | |
| info=info | |
| ) | |
| self.benchmark_keywords = benchmark_keywords or [] | |
| self.model_keywords = model_keywords or [] | |
| # Store groups for later use | |
| self._groups = {} | |
| def get_filtered_groups(self, columns: List[str]) -> Dict[str, List[str]]: | |
| """Get column groups based on keywords.""" | |
| filtered_groups = {} | |
| # Add benchmark groups | |
| for benchmark in self.benchmark_keywords: | |
| matching_cols = [ | |
| col for col in columns | |
| if benchmark in col.lower() | |
| ] | |
| if matching_cols: | |
| filtered_groups[f"Benchmark group for {benchmark}"] = matching_cols | |
| # Add model groups | |
| for model in self.model_keywords: | |
| matching_cols = [ | |
| col for col in columns | |
| if model in col.lower() | |
| ] | |
| if matching_cols: | |
| filtered_groups[f"Model group for {model}"] = matching_cols | |
| self._groups = filtered_groups | |
| return filtered_groups | |
| import re | |
| class SubstringSelectColumns(SelectColumns): | |
| """ | |
| Extends SelectColumns to support filtering columns by predefined substrings. | |
| When a substring is selected, all columns containing that substring will be selected. | |
| """ | |
| substring_groups: Dict[str, List[str]] = field(default_factory=dict) | |
| selected_substrings: List[str] = field(default_factory=list) | |
| def __post_init__(self): | |
| # Ensure default_selection is a list | |
| if self.default_selection is None: | |
| self.default_selection = [] | |
| # Build reverse mapping of column to substrings | |
| self.column_to_substrings = {} | |
| for substring, patterns in self.substring_groups.items(): | |
| for pattern in patterns: | |
| # Convert glob-style patterns to regex | |
| regex = re.compile(pattern.replace('*', '.*')) | |
| # Find matching columns in default_selection | |
| for col in self.default_selection: | |
| if regex.search(col): | |
| if col not in self.column_to_substrings: | |
| self.column_to_substrings[col] = [] | |
| self.column_to_substrings[col].append(substring) | |
| # Apply initial substring selections | |
| if self.selected_substrings: | |
| self.update_selection_from_substrings() | |
| def update_selection_from_substrings(self) -> List[str]: | |
| """ | |
| Updates the column selection based on selected substrings. | |
| Returns the new list of selected columns. | |
| """ | |
| selected_columns = self.cant_deselect.copy() | |
| # If no substrings selected, show all columns | |
| if not self.selected_substrings: | |
| selected_columns.extend([ | |
| col for col in self.default_selection | |
| if col not in self.cant_deselect | |
| ]) | |
| return selected_columns | |
| # Add columns that match any selected substring | |
| for col, substrings in self.column_to_substrings.items(): | |
| if any(s in self.selected_substrings for s in substrings): | |
| if col not in selected_columns: | |
| selected_columns.append(col) | |
| return selected_columns | |
| def restart_space(): | |
| API.restart_space(repo_id=REPO_ID) | |
| ### Space initialisation - refresh caches | |
| try: | |
| if os.path.exists(EVAL_REQUESTS_SUBGRAPH): | |
| shutil.rmtree(EVAL_REQUESTS_SUBGRAPH) | |
| snapshot_download( | |
| repo_id=QUEUE_REPO_SUBGRAPH, local_dir=EVAL_REQUESTS_SUBGRAPH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
| ) | |
| except Exception: | |
| restart_space() | |
| try: | |
| if os.path.exists(EVAL_REQUESTS_CAUSALGRAPH): | |
| shutil.rmtree(EVAL_REQUESTS_CAUSALGRAPH) | |
| snapshot_download( | |
| repo_id=QUEUE_REPO_CAUSALGRAPH, local_dir=EVAL_REQUESTS_CAUSALGRAPH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
| ) | |
| except Exception: | |
| restart_space() | |
| try: | |
| if os.path.exists(EVAL_RESULTS_MIB_SUBGRAPH_PATH): | |
| shutil.rmtree(EVAL_RESULTS_MIB_SUBGRAPH_PATH) | |
| snapshot_download( | |
| repo_id=RESULTS_REPO_MIB_SUBGRAPH, local_dir=EVAL_RESULTS_MIB_SUBGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
| ) | |
| except Exception: | |
| restart_space() | |
| try: | |
| if os.path.exists(EVAL_RESULTS_MIB_CAUSALGRAPH_PATH): | |
| shutil.rmtree(EVAL_RESULTS_MIB_CAUSALGRAPH_PATH) | |
| snapshot_download( | |
| repo_id=RESULTS_REPO_MIB_CAUSALGRAPH, local_dir=EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
| ) | |
| except Exception: | |
| restart_space() | |
| def _sigmoid(x): | |
| try: | |
| return 1 / (1 + math.exp(-2 * (x-1))) | |
| except: | |
| return "-" | |
| LEADERBOARD_DF_MIB_SUBGRAPH_FPL = get_leaderboard_df_mib_subgraph(EVAL_RESULTS_MIB_SUBGRAPH_PATH, COLS_MIB_SUBGRAPH, BENCHMARK_COLS_MIB_SUBGRAPH) | |
| LEADERBOARD_DF_MIB_SUBGRAPH_FEQ = get_leaderboard_df_mib_subgraph(EVAL_RESULTS_MIB_SUBGRAPH_PATH, COLS_MIB_SUBGRAPH, BENCHMARK_COLS_MIB_SUBGRAPH, | |
| metric_type="CMD") | |
| # In app.py, modify the LEADERBOARD initialization | |
| LEADERBOARD_DF_MIB_CAUSALGRAPH_AGGREGATED, LEADERBOARD_DF_MIB_CAUSALGRAPH_AVERAGED = get_leaderboard_df_mib_causalgraph( | |
| EVAL_RESULTS_MIB_CAUSALGRAPH_PATH | |
| ) | |
| ( | |
| finished_eval_queue_df_subgraph, | |
| pending_eval_queue_df_subgraph, | |
| ) = get_evaluation_queue_df(EVAL_REQUESTS_SUBGRAPH, EVAL_COLS, "Circuit") | |
| ( | |
| finished_eval_queue_df_causalvariable, | |
| pending_eval_queue_df_causalvariable, | |
| ) = get_evaluation_queue_df(EVAL_REQUESTS_CAUSALGRAPH, EVAL_COLS, "Causal Variable") | |
| finished_eval_queue = pd.concat((finished_eval_queue_df_subgraph, finished_eval_queue_df_causalvariable)) | |
| pending_eval_queue = pd.concat((pending_eval_queue_df_subgraph, pending_eval_queue_df_causalvariable)) | |
| def init_leaderboard_mib_subgraph(dataframe, track): | |
| """Initialize the subgraph leaderboard with display names for better readability.""" | |
| if dataframe is None or dataframe.empty: | |
| raise ValueError("Leaderboard DataFrame is empty or None.") | |
| print("\nDebugging DataFrame columns:", dataframe.columns.tolist()) | |
| model_name_mapping = { | |
| "qwen2_5": "Qwen-2.5", | |
| "gpt2": "GPT-2", | |
| "gemma2": "Gemma-2", | |
| "llama3": "Llama-3.1" | |
| } | |
| benchmark_mapping = { | |
| "ioi": "IOI", | |
| "mcqa": "MCQA", | |
| "arithmetic_addition": "Arithmetic (+)", | |
| "arithmetic_subtraction": "Arithmetic (-)", | |
| "arc_easy": "ARC (Easy)", | |
| "arc_challenge": "ARC (Challenge)" | |
| } | |
| display_mapping = {} | |
| for task in TasksMib_Subgraph: | |
| for model in task.value.models: | |
| field_name = f"{task.value.benchmark}_{model}" | |
| display_name = f"{benchmark_mapping[task.value.benchmark]} - {model_name_mapping[model]}" | |
| display_mapping[field_name] = display_name | |
| # Now when creating benchmark groups, we'll use display names | |
| benchmark_groups = [] | |
| for task in TasksMib_Subgraph: | |
| benchmark = task.value.benchmark | |
| benchmark_cols = [ | |
| display_mapping[f"{benchmark}_{model}"] # Use display name from our mapping | |
| for model in task.value.models | |
| if f"{benchmark}_{model}" in dataframe.columns | |
| ] | |
| if benchmark_cols: | |
| benchmark_groups.append(benchmark_cols) | |
| print(f"\nBenchmark group for {benchmark}:", benchmark_cols) | |
| # Similarly for model groups | |
| model_groups = [] | |
| all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models)) | |
| for model in all_models: | |
| model_cols = [ | |
| display_mapping[f"{task.value.benchmark}_{model}"] # Use display name | |
| for task in TasksMib_Subgraph | |
| if model in task.value.models | |
| and f"{task.value.benchmark}_{model}" in dataframe.columns | |
| ] | |
| if model_cols: | |
| model_groups.append(model_cols) | |
| print(f"\nModel group for {model}:", model_cols) | |
| # Combine all groups using display names | |
| all_groups = benchmark_groups + model_groups | |
| all_columns = [col for group in all_groups for col in group] | |
| renamed_df = dataframe.rename(columns=display_mapping) | |
| all_columns = renamed_df.columns.tolist() | |
| # Original code | |
| return Leaderboard( | |
| value=renamed_df, # Use DataFrame with display names | |
| datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)], | |
| search_columns=["Method"], | |
| hide_columns=["eval_name"], | |
| interactive=False, | |
| ), renamed_df | |
| def init_leaderboard_mib_causalgraph(dataframe, track): | |
| model_name_mapping = { | |
| "Qwen2ForCausalLM": "Qwen-2.5", | |
| "GPT2ForCausalLM": "GPT-2", | |
| "GPT2LMHeadModel": "GPT-2", | |
| "Gemma2ForCausalLM": "Gemma-2", | |
| "LlamaForCausalLM": "Llama-3.1" | |
| } | |
| benchmark_mapping = { | |
| "ioi_task": "IOI", | |
| "4_answer_MCQA": "MCQA", | |
| "arithmetic_addition": "Arithmetic (+)", | |
| "arithmetic_subtraction": "Arithmetic (-)", | |
| "ARC_easy": "ARC (Easy)", | |
| "RAVEL": "RAVEL" | |
| } | |
| target_variables_mapping = { | |
| "output_token": "Output Token", | |
| "output_position": "Output Position", | |
| "answer_pointer": "Answer Pointer", | |
| "answer": "Answer", | |
| "Continent": "Continent", | |
| "Language": "Language", | |
| "Country": "Country", | |
| "Language": "Language" | |
| } | |
| display_mapping = {} | |
| for task in TasksMib_Causalgraph: | |
| for model in task.value.models: | |
| for target_variables in task.value.target_variables: | |
| field_name = f"{model}_{task.value.col_name}_{target_variables}" | |
| display_name = f"{benchmark_mapping[task.value.col_name]} - {model_name_mapping[model]} - {target_variables_mapping[target_variables]}" | |
| display_mapping[field_name] = display_name | |
| renamed_df = dataframe.rename(columns=display_mapping) | |
| # Create only necessary columns | |
| return Leaderboard( | |
| value=renamed_df, | |
| datatype=[c.type for c in fields(AutoEvalColumn_mib_causalgraph)], | |
| search_columns=["Method"], | |
| hide_columns=["eval_name"], | |
| bool_checkboxgroup_label="Hide models", | |
| interactive=False, | |
| ), renamed_df | |
| def init_leaderboard(dataframe, track): | |
| if dataframe is None or dataframe.empty: | |
| raise ValueError("Leaderboard DataFrame is empty or None.") | |
| # filter for correct track | |
| dataframe = dataframe.loc[dataframe["Track"] == track] | |
| return Leaderboard( | |
| value=dataframe, | |
| datatype=[c.type for c in fields(AutoEvalColumn)], | |
| select_columns=SelectColumns( | |
| default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default], | |
| cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden], | |
| label="Select Columns to Display:", | |
| ), | |
| search_columns=[AutoEvalColumn.model.name], | |
| hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], | |
| bool_checkboxgroup_label="Hide models", | |
| interactive=False, | |
| ) | |
| def process_json(temp_file): | |
| if temp_file is None: | |
| return {} | |
| # Handle file upload | |
| try: | |
| file_path = temp_file.name | |
| if file_path.endswith('.gz'): | |
| with gzip.open(file_path, 'rt') as f: | |
| data = json.load(f) | |
| else: | |
| with open(file_path, 'r') as f: | |
| data = json.load(f) | |
| except Exception as e: | |
| raise gr.Error(f"Error processing file: {str(e)}") | |
| gr.Markdown("Upload successful!") | |
| return data | |
| def get_hf_username(hf_repo): | |
| hf_repo = hf_repo.rstrip("/") | |
| parts = hf_repo.split("/") | |
| username = parts[-2] | |
| return username | |
| # Define the preset substrings for filtering | |
| PRESET_SUBSTRINGS = ["IOI", "MCQA", "Arithmetic", "ARC", "GPT-2", "Qwen-2.5", "Gemma-2", "Llama-3.1"] | |
| TASK_SUBSTRINGS = ["IOI", "MCQA", "Arithmetic", "ARC"] | |
| TASK_CAUSAL_SUBSTRINGS = ["IOI", "MCQA", "ARC (Easy)", "RAVEL"] | |
| MODEL_SUBSTRINGS = ["GPT-2", "Qwen-2.5", "Gemma-2", "Llama-3.1"] | |
| def filter_columns_by_substrings(dataframe: pd.DataFrame, selected_task_substrings: List[str], | |
| selected_model_substrings: List[str]) -> pd.DataFrame: | |
| """ | |
| Filter columns based on the selected substrings. | |
| """ | |
| original_dataframe = deepcopy(dataframe) | |
| if not selected_task_substrings and not selected_model_substrings: | |
| return dataframe # No filtering if no substrings are selected | |
| if not selected_task_substrings: | |
| # Filter columns that contain any of the selected model substrings | |
| filtered_columns = [ | |
| col for col in dataframe.columns | |
| if any(sub.lower() in col.lower() for sub in selected_model_substrings) | |
| or col == "Method" | |
| ] | |
| return dataframe[filtered_columns] | |
| elif not selected_model_substrings: | |
| # Filter columns that contain any of the selected task substrings | |
| filtered_columns = [ | |
| col for col in dataframe.columns | |
| if any(sub.lower() in col.lower() for sub in selected_task_substrings) | |
| or col == "Method" | |
| ] | |
| return dataframe[filtered_columns] | |
| # Filter columns by task first. Use AND logic to combine with model filtering | |
| filtered_columns = [ | |
| col for col in dataframe.columns | |
| if any(sub.lower() in col.lower() for sub in selected_task_substrings) | |
| or col == "Method" | |
| ] | |
| filtered_columns = [ | |
| col for col in dataframe[filtered_columns].columns | |
| if any(sub.lower() in col.lower() for sub in selected_model_substrings) | |
| or col == "Method" | |
| ] | |
| return dataframe[filtered_columns] | |
| def update_leaderboard(dataframe: pd.DataFrame, selected_task_substrings: List[str], | |
| selected_model_substrings: List[str], ascending: bool = False): | |
| """ | |
| Update the leaderboard based on the selected substrings. | |
| """ | |
| filtered_dataframe = filter_columns_by_substrings(dataframe, selected_task_substrings, selected_model_substrings) | |
| if len(selected_task_substrings) >= 2 or len(selected_task_substrings) == 0: | |
| if len(selected_model_substrings) >= 2 or len(selected_model_substrings) == 0: | |
| show_average = True | |
| else: | |
| show_average = False | |
| else: | |
| show_average = False | |
| def _transform_floats(df): | |
| df_transformed = df.copy() | |
| # Apply transformation row by row | |
| for i, row in df_transformed.iterrows(): | |
| # Apply sigmoid only to numeric values in the row | |
| df_transformed.loc[i] = row.apply(lambda x: _sigmoid(x) if isinstance(x, (float, int)) else x) | |
| return df_transformed | |
| if show_average: | |
| # Replace "-" with NaN for calculation, then use skipna=False to get NaN when any value is missing | |
| numeric_data = filtered_dataframe.replace("-", np.nan) | |
| means = numeric_data.mean(axis=1, skipna=False) | |
| # Apply the same transformation for computing scores | |
| s_filtered_dataframe = _transform_floats(filtered_dataframe) | |
| s_numeric_data = s_filtered_dataframe.replace("-", np.nan) | |
| s_means = s_numeric_data.mean(axis=1, skipna=False) | |
| # Set Average and Score columns | |
| # Keep numeric values as NaN for proper sorting, convert to "-" only for display if needed | |
| filtered_dataframe.loc[:, "Average"] = means.round(2) | |
| filtered_dataframe.loc[:, "Score"] = s_means.round(2) | |
| # Sort by Average with NaN values at the end | |
| filtered_dataframe = filtered_dataframe.sort_values(by=["Average"], ascending=ascending, na_position='last') | |
| # After sorting, convert NaN back to "-" for display | |
| filtered_dataframe.loc[:, "Average"] = filtered_dataframe["Average"].fillna("-") | |
| filtered_dataframe.loc[:, "Score"] = filtered_dataframe["Score"].fillna("-") | |
| return filtered_dataframe | |
| def process_url(url): | |
| # Add your URL processing logic here | |
| return f"You entered the URL: {url}" | |
| demo = gr.Blocks(css=custom_css) | |
| with demo: | |
| gr.HTML(TITLE) | |
| gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
| with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
| with gr.TabItem("Circuit Localization", elem_id="subgraph", id=0): | |
| with gr.Tabs() as subgraph_tabs: | |
| with gr.TabItem("CPR", id=0): | |
| # Add description for filters | |
| gr.Markdown(""" | |
| ### Filtering Options | |
| Use the dropdown menus below to filter results by specific tasks or models. | |
| You can combine filters to see specific task-model combinations. | |
| """) | |
| # CheckboxGroup for selecting substrings | |
| task_substring_checkbox = gr.CheckboxGroup( | |
| choices=TASK_SUBSTRINGS, | |
| label="View tasks:", | |
| value=TASK_SUBSTRINGS, # Default to all substrings selected | |
| ) | |
| model_substring_checkbox = gr.CheckboxGroup( | |
| choices = MODEL_SUBSTRINGS, | |
| label = "View models:", | |
| value = MODEL_SUBSTRINGS | |
| ) | |
| leaderboard, data = init_leaderboard_mib_subgraph(LEADERBOARD_DF_MIB_SUBGRAPH_FPL, "Subgraph") | |
| original_leaderboard = gr.State(value=data) | |
| ascending = gr.State(value=False) | |
| # Update the leaderboard when the user selects/deselects substrings | |
| task_substring_checkbox.change( | |
| fn=update_leaderboard, | |
| inputs=[original_leaderboard, task_substring_checkbox, model_substring_checkbox, ascending], | |
| outputs=leaderboard | |
| ) | |
| model_substring_checkbox.change( | |
| fn=update_leaderboard, | |
| inputs=[original_leaderboard, task_substring_checkbox, model_substring_checkbox, ascending], | |
| outputs=leaderboard | |
| ) | |
| print(f"Leaderboard is {leaderboard}") | |
| with gr.TabItem("CMD", id=1): | |
| # Add description for filters | |
| gr.Markdown(""" | |
| ### Filtering Options | |
| Use the dropdown menus below to filter results by specific tasks or models. | |
| You can combine filters to see specific task-model combinations. | |
| """) | |
| # CheckboxGroup for selecting substrings | |
| task_substring_checkbox = gr.CheckboxGroup( | |
| choices=TASK_SUBSTRINGS, | |
| label="View tasks:", | |
| value=TASK_SUBSTRINGS, # Default to all substrings selected | |
| ) | |
| model_substring_checkbox = gr.CheckboxGroup( | |
| choices = MODEL_SUBSTRINGS, | |
| label = "View models:", | |
| value = MODEL_SUBSTRINGS | |
| ) | |
| leaderboard, data = init_leaderboard_mib_subgraph(LEADERBOARD_DF_MIB_SUBGRAPH_FEQ, "Subgraph") | |
| original_leaderboard = gr.State(value=data) | |
| ascending = gr.State(value=True) | |
| # Update the leaderboard when the user selects/deselects substrings | |
| task_substring_checkbox.change( | |
| fn=update_leaderboard, | |
| inputs=[original_leaderboard, task_substring_checkbox, model_substring_checkbox, ascending], | |
| outputs=leaderboard | |
| ) | |
| model_substring_checkbox.change( | |
| fn=update_leaderboard, | |
| inputs=[original_leaderboard, task_substring_checkbox, model_substring_checkbox, ascending], | |
| outputs=leaderboard | |
| ) | |
| print(f"Leaderboard is {leaderboard}") | |
| # Then modify the Causal Graph tab section | |
| with gr.TabItem("Causal Variable Localization", elem_id="causalgraph", id=1): | |
| with gr.Tabs() as causalgraph_tabs: | |
| with gr.TabItem("Highest View", id=0): | |
| gr.Markdown(""" | |
| ### Filtering Options | |
| Use the dropdown menus below to filter results by specific tasks or models. | |
| You can combine filters to see specific task-model combinations. | |
| """) | |
| task_substring_checkbox = gr.CheckboxGroup( | |
| choices=TASK_CAUSAL_SUBSTRINGS, | |
| label="View tasks:", | |
| value=TASK_CAUSAL_SUBSTRINGS, # Default to all substrings selected | |
| ) | |
| model_substring_checkbox = gr.CheckboxGroup( | |
| choices = MODEL_SUBSTRINGS, | |
| label = "View models:", | |
| value = MODEL_SUBSTRINGS | |
| ) | |
| leaderboard_aggregated, data = init_leaderboard_mib_causalgraph( | |
| LEADERBOARD_DF_MIB_CAUSALGRAPH_AGGREGATED, | |
| "Causal Graph" | |
| ) | |
| original_leaderboard = gr.State(value=data) | |
| ascending = gr.State(value=False) | |
| task_substring_checkbox.change( | |
| fn=update_leaderboard, | |
| inputs=[original_leaderboard, task_substring_checkbox, model_substring_checkbox, ascending], | |
| outputs=leaderboard_aggregated | |
| ) | |
| model_substring_checkbox.change( | |
| fn=update_leaderboard, | |
| inputs=[original_leaderboard, task_substring_checkbox, model_substring_checkbox, ascending], | |
| outputs=leaderboard_aggregated | |
| ) | |
| with gr.TabItem("Averaged View", id=1): | |
| task_substring_checkbox = gr.CheckboxGroup( | |
| choices=TASK_CAUSAL_SUBSTRINGS, | |
| label="View tasks:", | |
| value=TASK_CAUSAL_SUBSTRINGS, # Default to all substrings selected | |
| ) | |
| model_substring_checkbox = gr.CheckboxGroup( | |
| choices = MODEL_SUBSTRINGS, | |
| label = "View models:", | |
| value = MODEL_SUBSTRINGS | |
| ) | |
| leaderboard_averaged, data = init_leaderboard_mib_causalgraph( | |
| LEADERBOARD_DF_MIB_CAUSALGRAPH_AVERAGED, | |
| "Causal Graph" | |
| ) | |
| original_leaderboard = gr.State(value=data) | |
| ascending = gr.State(value=False) | |
| task_substring_checkbox.change( | |
| fn=update_leaderboard, | |
| inputs=[original_leaderboard, task_substring_checkbox, model_substring_checkbox, ascending], | |
| outputs=leaderboard_averaged | |
| ) | |
| model_substring_checkbox.change( | |
| fn=update_leaderboard, | |
| inputs=[original_leaderboard, task_substring_checkbox, model_substring_checkbox, ascending], | |
| outputs=leaderboard_averaged | |
| ) | |
| with gr.TabItem("Submit", elem_id="llm-benchmark-tab-table", id=2): | |
| # Track selection | |
| track = gr.Radio( | |
| choices=[ | |
| "Circuit Localization Track", | |
| "Causal Variable Localization Track" | |
| ], | |
| label="Select Competition Track", | |
| elem_id="track_selector" | |
| ) | |
| with gr.Column(visible=False, elem_id="bordered-column") as circuit_ui: | |
| with gr.Row(): | |
| gr.Markdown(EVALUATION_QUEUE_TEXT_SUBGRAPH, elem_classes="markdown-text") | |
| with gr.Row(): | |
| hf_repo_circ = gr.Textbox( | |
| label="HuggingFace Repository URL", | |
| placeholder="https://huggingface.co/username/repo/path", | |
| info="Must be a valid HuggingFace URL pointing to folders containing either 1 importance score file per task/model, or " \ | |
| "9 circuit files per task/model (.json or .pt)." | |
| ) | |
| level = gr.Radio( | |
| choices=[ | |
| "Edge", | |
| "Node (submodule)", | |
| "Node (neuron)" | |
| ], | |
| label="Level of granularity", | |
| info="Is your circuit defined by its inclusion/exclusion of certain edges (e.g., MLP1 to H10L12), of certain submodules (e.g., MLP1), or of neurons " \ | |
| "within those submodules (e.g., MLP1 neuron 295)?" | |
| ) | |
| with gr.Column(visible=False, elem_id="bordered-column") as causal_ui: | |
| gr.Markdown(EVALUATION_QUEUE_TEXT_CAUSALVARIABLE, elem_classes="markdown-text") | |
| with gr.Row(): | |
| hf_repo_cg = gr.Textbox( | |
| label="HuggingFace Repository URL", | |
| placeholder="https://huggingface.co/username/repo/path", | |
| info="Must be a valid HuggingFace URL pointing to a file containing the trained featurizer (.pt). " ) | |
| # Common fields | |
| with gr.Group(): | |
| gr.Markdown("### Submission Information") | |
| method_name = gr.Textbox(label="Method Name") | |
| description = gr.Textbox(label="One-line Description") | |
| contact_email = gr.Textbox(label="Contact Email") | |
| # Dynamic UI logic | |
| def toggle_ui(track): | |
| circuit = track == "Circuit Localization Track" | |
| causal = not circuit | |
| return { | |
| circuit_ui: gr.Group(visible=circuit), | |
| causal_ui: gr.Group(visible=causal) | |
| } | |
| track.change(toggle_ui, track, [circuit_ui, causal_ui]) | |
| # Submission handling | |
| status = gr.Textbox(label="Submission Status", visible=False) | |
| def handle_submission(track, hf_repo_circ, hf_repo_cg, level, method_name, description, contact_email): | |
| errors = [] | |
| warnings = [] | |
| breaking_error = False | |
| hf_repo = hf_repo_circ if "Circuit" in track else hf_repo_cg | |
| # Validate common fields | |
| if not method_name.strip(): | |
| errors.append("Method name is required") | |
| if "@" not in contact_email or "." not in contact_email: | |
| errors.append("Valid email address is required") | |
| if "Circuit" in track and not level: | |
| errors.append("Level of granularity is required") | |
| if len(description.strip()) > 150: | |
| warnings.append("Description longer than 150 characters and will be truncated.") | |
| description = description.strip()[:150] | |
| if not description.strip(): | |
| errors.append("Description is required") | |
| if not hf_repo.startswith("https://huggingface.co/") and not hf_repo.startswith("http://huggingface.co/"): | |
| errors.append(f"Invalid HuggingFace URL - must start with https://huggingface.co/") | |
| breaking_error = True | |
| else: | |
| repo_id, subfolder, revision = parse_huggingface_url(hf_repo) | |
| if repo_id is None: | |
| errors.append("Could not read username or repo name from HF URL") | |
| breaking_error = True | |
| else: | |
| user_name, repo_name = repo_id.split("/") | |
| under_rate_limit, time_left = check_rate_limit(track, user_name, contact_email) | |
| if not under_rate_limit: | |
| errors.append(f"Rate limit exceeded (max 2 submissions per week). Please try again in {time_left}. " \ | |
| "(If you're trying again after a failed validation, either remove the previous entry below or try again in about 30 minutes.") | |
| breaking_error = True | |
| # Track-specific validation | |
| if "Circuit" in track and not breaking_error: | |
| submission_errors, submission_warnings = verify_circuit_submission(hf_repo, level) | |
| elif not breaking_error: | |
| submission_errors, submission_warnings = verify_causal_variable_submission(hf_repo) | |
| if not breaking_error: | |
| errors.extend(submission_errors) | |
| warnings.extend(submission_warnings) | |
| _id = secrets.token_urlsafe(12) | |
| if errors: | |
| return [ | |
| gr.Textbox("\n".join(f"β {e}" for e in errors), visible=True), | |
| None, None, | |
| gr.Column(visible=False), | |
| ] | |
| elif warnings: | |
| return [ | |
| gr.Textbox("Warnings:", visible=True), | |
| gr.Markdown("\n\n".join(f"β’ {w}" for w in warnings)), | |
| (track, hf_repo_circ, hf_repo_cg, level, method_name, description, contact_email, _id), | |
| gr.Column(visible=True) | |
| ] | |
| else: | |
| return upload_to_queue(track, hf_repo_circ, hf_repo_cg, level, method_name, description, contact_email, _id) | |
| # New warning confirmation dialog | |
| warning_modal = gr.Column(visible=False, variant="panel") | |
| with warning_modal: | |
| gr.Markdown("### β οΈ Submission Warnings") | |
| warning_display = gr.Markdown() | |
| proceed_btn = gr.Button("Proceed Anyway", variant="secondary") | |
| cancel_btn = gr.Button("Cancel Submission", variant="primary") | |
| # Store submission data between callbacks | |
| pending_submission = gr.State() | |
| submit_btn = gr.Button("Submit Entry", variant="primary") | |
| submit_btn.click( | |
| handle_submission, | |
| inputs=[track, hf_repo_circ, hf_repo_cg, level, method_name, description, contact_email], | |
| outputs=[status, warning_display, pending_submission, warning_modal] | |
| ) | |
| proceed_btn.click( | |
| lambda x: upload_to_queue(*x), | |
| inputs=pending_submission, | |
| outputs=[status, warning_display, pending_submission, warning_modal] | |
| ) | |
| cancel_btn.click( | |
| lambda: [gr.Textbox("Submission canceled.", visible=True), None, None, gr.Column(visible=False)], | |
| outputs=[status, warning_display, pending_submission, warning_modal] | |
| ) | |
| with gr.Column(): | |
| with gr.Accordion( | |
| f"β Finished Evaluations ({len(finished_eval_queue)})", | |
| open=False, | |
| ): | |
| with gr.Row(): | |
| finished_eval_table = gr.components.Dataframe( | |
| value=finished_eval_queue, | |
| headers=EVAL_COLS, | |
| datatype=EVAL_TYPES, | |
| row_count=5, | |
| ) | |
| with gr.Accordion( | |
| f"β³ Pending Evaluation Queue ({len(pending_eval_queue)})", | |
| open=False, | |
| ): | |
| with gr.Row(): | |
| pending_eval_table = gr.components.Dataframe( | |
| value=pending_eval_queue, | |
| headers=EVAL_COLS, | |
| datatype=EVAL_TYPES, | |
| row_count=5, | |
| ) | |
| with gr.Group(): | |
| gr.Markdown("### Remove Submission from Queue") | |
| with gr.Row(): | |
| name_r = gr.Textbox(label="Method Name") | |
| _id_r = gr.Textbox(label = "Submission ID") | |
| status_r = gr.Textbox(label="Removal Status", visible=False) | |
| remove_button = gr.Button("Remove Entry") | |
| remove_button.click( | |
| remove_submission, | |
| inputs=[track, name_r, _id_r], | |
| outputs=[status_r] | |
| ) | |
| # Add info about rate limits | |
| gr.Markdown(""" | |
| ### Submission Policy | |
| - UPDATE (Oct. 12, 2025): Due to changes to HF storage limits, the maximum file size is now 50MB. If you're running into unexpected errors validating your Llama or Gemma artifacts, this may be why! For circuits, .pt files are *strongly* preferred over .json. For causal variable track artifacts, if you cannot reduce your filesize, please contact us on the MIB Discord. | |
| - Maximum 2 valid submissions per HuggingFace account per week | |
| - Invalid submissions don't count toward your limit | |
| - Rate limit tracked on a rolling basis: a submission no longer counts toward the limit as soon as 7 days have passed since the submission time | |
| - The queues can take up to an hour to update; don't fret if your submission doesn't show up immediately! | |
| """) | |
| with gr.Row(): | |
| with gr.Accordion("π Citation", open=False): | |
| citation_button = gr.Textbox( | |
| value=CITATION_BUTTON_TEXT, | |
| label=CITATION_BUTTON_LABEL, | |
| lines=10, | |
| elem_id="citation-button", | |
| show_copy_button=True, | |
| ) | |
| scheduler = BackgroundScheduler() | |
| scheduler.add_job(restart_space, "interval", seconds=1800) | |
| scheduler.start() | |
| demo.queue(default_concurrency_limit=40).launch(share=True, ssr_mode=False) |