mic3333 commited on
Commit
63c0d9a
·
verified ·
1 Parent(s): 3fd1485

update to timestamp aware version

Browse files
Files changed (1) hide show
  1. app.py +48 -17
app.py CHANGED
@@ -18,9 +18,8 @@ pipe = pipeline(
18
 
19
  print("Model loaded successfully!")
20
 
21
- def format_chat_template(document):
22
  """Format input using the recommended template from model card"""
23
- instruction = "Please summarize the input document."
24
  row_json = [{
25
  "role": "user",
26
  "content": f"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Input:\n{document}\n\n### Response:\n"
@@ -28,18 +27,18 @@ def format_chat_template(document):
28
  return tokenizer.apply_chat_template(row_json, tokenize=False, add_generation_prompt=False)
29
 
30
  @spaces.GPU
31
- def summarize(text):
32
- """Generate summary using the model"""
33
  try:
34
- # Format input with recommended template
35
- formatted_input = format_chat_template(text)
36
 
37
  # Generate summary
38
  output = pipe(
39
  formatted_input,
40
- max_new_tokens=2000,
41
  do_sample=True,
42
- temperature=0.3,
43
  top_p=0.9,
44
  return_full_text=False
45
  )
@@ -54,20 +53,52 @@ def summarize(text):
54
  # Create Gradio interface
55
  demo = gr.Interface(
56
  fn=summarize,
57
- inputs=gr.Textbox(
58
- lines=10,
59
- placeholder="Enter text to summarize...",
60
- label="Input Text"
61
- ),
 
 
 
 
 
 
 
 
62
  outputs=gr.Textbox(
63
  label="Summary",
64
- lines=5
65
  ),
66
  title="SummLlama3.2-3B Summarization",
67
- description="Test the DISLab/SummLlama3.2-3B model - a specialized summarization model trained with DPO",
68
  examples=[
69
- ["Artificial intelligence has made remarkable progress in recent years, particularly in natural language processing. Large language models can now understand context, generate human-like text, and perform complex reasoning tasks. These advances have enabled applications ranging from chatbots to code generation tools, transforming how we interact with technology."]
70
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
  )
72
 
73
  if __name__ == "__main__":
 
18
 
19
  print("Model loaded successfully!")
20
 
21
+ def format_chat_template(instruction, document):
22
  """Format input using the recommended template from model card"""
 
23
  row_json = [{
24
  "role": "user",
25
  "content": f"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Input:\n{document}\n\n### Response:\n"
 
27
  return tokenizer.apply_chat_template(row_json, tokenize=False, add_generation_prompt=False)
28
 
29
  @spaces.GPU
30
+ def summarize(instruction, text):
31
+ """Generate summary using the model with custom instruction"""
32
  try:
33
+ # Format input with custom instruction
34
+ formatted_input = format_chat_template(instruction, text)
35
 
36
  # Generate summary
37
  output = pipe(
38
  formatted_input,
39
+ max_new_tokens=512,
40
  do_sample=True,
41
+ temperature=0.7,
42
  top_p=0.9,
43
  return_full_text=False
44
  )
 
53
  # Create Gradio interface
54
  demo = gr.Interface(
55
  fn=summarize,
56
+ inputs=[
57
+ gr.Textbox(
58
+ lines=3,
59
+ value="Please summarize this meeting transcript, preserving key timestamps and noting when important topics were discussed.",
60
+ label="Custom Instruction",
61
+ placeholder="Enter your instruction here..."
62
+ ),
63
+ gr.Textbox(
64
+ lines=10,
65
+ placeholder="Enter text or meeting transcript to summarize...",
66
+ label="Document/Transcript"
67
+ )
68
+ ],
69
  outputs=gr.Textbox(
70
  label="Summary",
71
+ lines=8
72
  ),
73
  title="SummLlama3.2-3B Summarization",
74
+ description="Test the DISLab/SummLlama3.2-3B model with customizable instructions. Modify the instruction to control how the model summarizes your content.",
75
  examples=[
76
+ [
77
+ "Please summarize this meeting transcript, preserving key timestamps and noting when important topics were discussed.",
78
+ """Alvaro Orsi 1:39
79
+ Yeah.
80
+ Mohammad Hossain Dehghan Shoar 1:47
81
+ What that policy does XY and said, what is the impact on each agent and what is the impact on their sick leaves and overall life expectancy? So I think I wanna spend a little bit more time to make it more exciting how agents interact with one another and make it more general in terms of.
82
+ Alvaro Orsi 1:57
83
+ Yeah.
84
+ Yeah.
85
+ Mohammad Hossain Dehghan Shoar 2:07
86
+ Infectious disease as well because at the moment it is set four PM 2.5, but I think it's it's the more difficult to run in versus grad ABM. But I've I think it's it's running, we're getting the same similar results at least."""
87
+ ],
88
+ [
89
+ "Summarize the key technical points discussed in this transcript.",
90
+ """Artificial intelligence has made remarkable progress in recent years, particularly in natural language processing. Large language models can now understand context, generate human-like text, and perform complex reasoning tasks. These advances have enabled applications ranging from chatbots to code generation tools, transforming how we interact with technology."""
91
+ ],
92
+ [
93
+ "Extract action items and decisions from this meeting, including who is responsible and any mentioned timeframes.",
94
+ """Team Meeting - Project Alpha
95
+ John (9:15): We need to finalize the API design by Friday.
96
+ Sarah (9:20): I'll take ownership of the authentication module. Can deliver by Thursday.
97
+ Mike (9:25): The database schema needs review. John, can you look at it by Wednesday?
98
+ John (9:27): Sure, I'll review it tomorrow and get back to you."""
99
+ ]
100
+ ],
101
+ allow_flagging="never"
102
  )
103
 
104
  if __name__ == "__main__":