Spaces:
Runtime error
Runtime error
Commit
·
2ce295b
1
Parent(s):
b0cbfee
introduce control net from diffusers
Browse files- visual_foundation_models.py +760 -331
visual_foundation_models.py
CHANGED
|
@@ -6,8 +6,10 @@ from diffusers import StableDiffusionInpaintPipeline
|
|
| 6 |
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
|
| 7 |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
|
| 8 |
from controlnet_aux import OpenposeDetector, MLSDdetector, HEDdetector
|
|
|
|
| 9 |
from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation
|
| 10 |
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
|
|
|
|
| 11 |
from ldm.util import instantiate_from_config
|
| 12 |
from ControlNet.cldm.model import create_model, load_state_dict
|
| 13 |
from ControlNet.cldm.ddim_hacked import DDIMSampler
|
|
@@ -26,6 +28,46 @@ from pytorch_lightning import seed_everything
|
|
| 26 |
import cv2
|
| 27 |
import random
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
def HWC3(x):
|
| 30 |
assert x.dtype == np.uint8
|
| 31 |
if x.ndim == 2:
|
|
@@ -355,83 +397,82 @@ class line2image_new:
|
|
| 355 |
return updated_image_path
|
| 356 |
|
| 357 |
|
| 358 |
-
class image2line:
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
class line2image:
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
|
| 431 |
-
class
|
| 432 |
def __init__(self):
|
| 433 |
print("Direct detect soft HED boundary...")
|
| 434 |
-
self.detector = HEDdetector()
|
| 435 |
self.resolution = 512
|
| 436 |
|
| 437 |
def inference(self, inputs):
|
|
@@ -439,29 +480,30 @@ class image2hed:
|
|
| 439 |
image = Image.open(inputs)
|
| 440 |
image = np.array(image)
|
| 441 |
image = HWC3(image)
|
| 442 |
-
|
|
|
|
|
|
|
| 443 |
updated_image_path = get_new_image_name(inputs, func_name="hed-boundary")
|
| 444 |
-
|
| 445 |
-
image.save(updated_image_path)
|
| 446 |
return updated_image_path
|
| 447 |
|
| 448 |
-
|
| 449 |
-
class hed2image:
|
| 450 |
def __init__(self, device):
|
| 451 |
print("Initialize the hed2image model...")
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
self.
|
| 457 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 458 |
self.image_resolution = 512
|
| 459 |
-
self.
|
| 460 |
-
self.save_memory = False
|
| 461 |
-
self.strength = 1.0
|
| 462 |
-
self.guess_mode = False
|
| 463 |
-
self.scale = 9.0
|
| 464 |
self.seed = -1
|
|
|
|
| 465 |
self.a_prompt = 'best quality, extremely detailed'
|
| 466 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 467 |
|
|
@@ -470,35 +512,91 @@ class hed2image:
|
|
| 470 |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
| 471 |
image = Image.open(image_path)
|
| 472 |
image = np.array(image)
|
| 473 |
-
prompt = instruct_text
|
| 474 |
img = resize_image(HWC3(image), self.image_resolution)
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
|
| 478 |
-
control = torch.stack([control for _ in range(self.num_samples)], dim=0)
|
| 479 |
-
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 480 |
self.seed = random.randint(0, 65535)
|
| 481 |
seed_everything(self.seed)
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
|
| 489 |
-
if self.save_memory:
|
| 490 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 491 |
-
x_samples = self.model.decode_first_stage(samples)
|
| 492 |
-
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 493 |
updated_image_path = get_new_image_name(image_path, func_name="hed2image")
|
| 494 |
-
|
| 495 |
-
real_image.save(updated_image_path)
|
| 496 |
return updated_image_path
|
| 497 |
|
| 498 |
-
class
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 499 |
def __init__(self):
|
| 500 |
print("Direct detect scribble.")
|
| 501 |
-
self.detector = HEDdetector()
|
| 502 |
self.resolution = 512
|
| 503 |
|
| 504 |
def inference(self, inputs):
|
|
@@ -506,76 +604,136 @@ class image2scribble:
|
|
| 506 |
image = Image.open(inputs)
|
| 507 |
image = np.array(image)
|
| 508 |
image = HWC3(image)
|
| 509 |
-
detected_map = self.detector(resize_image(image, self.resolution))
|
| 510 |
-
detected_map = HWC3(detected_map)
|
| 511 |
image = resize_image(image, self.resolution)
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
detected_map[detected_map < 255] = 0
|
| 518 |
-
detected_map = 255 - detected_map
|
| 519 |
updated_image_path = get_new_image_name(inputs, func_name="scribble")
|
| 520 |
-
|
| 521 |
-
image.save(updated_image_path)
|
| 522 |
return updated_image_path
|
| 523 |
|
| 524 |
-
class
|
| 525 |
def __init__(self, device):
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
self.
|
| 531 |
-
|
| 532 |
-
|
|
|
|
|
|
|
|
|
|
| 533 |
self.image_resolution = 512
|
| 534 |
-
self.
|
| 535 |
-
self.save_memory = False
|
| 536 |
-
self.strength = 1.0
|
| 537 |
-
self.guess_mode = False
|
| 538 |
-
self.scale = 9.0
|
| 539 |
self.seed = -1
|
|
|
|
| 540 |
self.a_prompt = 'best quality, extremely detailed'
|
| 541 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 542 |
|
| 543 |
def inference(self, inputs):
|
| 544 |
print("===>Starting scribble2image Inference")
|
| 545 |
-
print(f'sketch device {self.device}')
|
| 546 |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
| 547 |
image = Image.open(image_path)
|
| 548 |
image = np.array(image)
|
| 549 |
-
prompt = instruct_text
|
| 550 |
image = 255 - image
|
| 551 |
img = resize_image(HWC3(image), self.image_resolution)
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
|
| 555 |
-
control = torch.stack([control for _ in range(self.num_samples)], dim=0)
|
| 556 |
-
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 557 |
self.seed = random.randint(0, 65535)
|
| 558 |
seed_everything(self.seed)
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
|
| 566 |
-
if self.save_memory:
|
| 567 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 568 |
-
x_samples = self.model.decode_first_stage(samples)
|
| 569 |
-
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 570 |
updated_image_path = get_new_image_name(image_path, func_name="scribble2image")
|
| 571 |
-
|
| 572 |
-
real_image.save(updated_image_path)
|
| 573 |
return updated_image_path
|
| 574 |
|
| 575 |
-
class
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 576 |
def __init__(self):
|
| 577 |
-
|
| 578 |
-
self.detector = OpenposeDetector()
|
| 579 |
self.resolution = 512
|
| 580 |
|
| 581 |
def inference(self, inputs):
|
|
@@ -583,32 +741,30 @@ class image2pose:
|
|
| 583 |
image = Image.open(inputs)
|
| 584 |
image = np.array(image)
|
| 585 |
image = HWC3(image)
|
| 586 |
-
detected_map, _ = self.detector(resize_image(image, self.resolution))
|
| 587 |
-
detected_map = HWC3(detected_map)
|
| 588 |
image = resize_image(image, self.resolution)
|
| 589 |
-
|
| 590 |
-
|
|
|
|
| 591 |
updated_image_path = get_new_image_name(inputs, func_name="human-pose")
|
| 592 |
-
|
| 593 |
-
image.save(updated_image_path)
|
| 594 |
return updated_image_path
|
| 595 |
|
| 596 |
-
class
|
| 597 |
def __init__(self, device):
|
| 598 |
-
|
| 599 |
-
|
| 600 |
-
|
| 601 |
-
|
| 602 |
-
self.
|
| 603 |
-
|
| 604 |
-
|
|
|
|
|
|
|
|
|
|
| 605 |
self.image_resolution = 512
|
| 606 |
-
self.
|
| 607 |
-
self.save_memory = False
|
| 608 |
-
self.strength = 1.0
|
| 609 |
-
self.guess_mode = False
|
| 610 |
-
self.scale = 9.0
|
| 611 |
self.seed = -1
|
|
|
|
| 612 |
self.a_prompt = 'best quality, extremely detailed'
|
| 613 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 614 |
|
|
@@ -617,68 +773,141 @@ class pose2image:
|
|
| 617 |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
| 618 |
image = Image.open(image_path)
|
| 619 |
image = np.array(image)
|
| 620 |
-
prompt = instruct_text
|
| 621 |
img = resize_image(HWC3(image), self.image_resolution)
|
| 622 |
-
|
| 623 |
-
|
| 624 |
-
control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
|
| 625 |
-
control = torch.stack([control for _ in range(self.num_samples)], dim=0)
|
| 626 |
-
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 627 |
self.seed = random.randint(0, 65535)
|
| 628 |
seed_everything(self.seed)
|
| 629 |
-
|
| 630 |
-
|
| 631 |
-
|
| 632 |
-
|
| 633 |
-
|
| 634 |
-
|
| 635 |
-
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
|
| 636 |
-
if self.save_memory:
|
| 637 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 638 |
-
x_samples = self.model.decode_first_stage(samples)
|
| 639 |
-
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 640 |
updated_image_path = get_new_image_name(image_path, func_name="pose2image")
|
| 641 |
-
|
| 642 |
-
real_image.save(updated_image_path)
|
| 643 |
return updated_image_path
|
| 644 |
|
| 645 |
-
class image2seg:
|
| 646 |
-
def __init__(self):
|
| 647 |
-
print("Direct segmentations.")
|
| 648 |
-
self.detector = UniformerDetector()
|
| 649 |
-
self.resolution = 512
|
| 650 |
|
| 651 |
-
|
| 652 |
-
|
| 653 |
-
|
| 654 |
-
|
| 655 |
-
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
|
| 659 |
-
|
| 660 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 661 |
updated_image_path = get_new_image_name(inputs, func_name="segmentation")
|
| 662 |
-
|
| 663 |
-
image.save(updated_image_path)
|
| 664 |
return updated_image_path
|
| 665 |
|
| 666 |
-
class
|
| 667 |
def __init__(self, device):
|
| 668 |
-
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
self.
|
| 673 |
-
|
| 674 |
-
|
|
|
|
|
|
|
|
|
|
| 675 |
self.image_resolution = 512
|
| 676 |
-
self.
|
| 677 |
-
self.save_memory = False
|
| 678 |
-
self.strength = 1.0
|
| 679 |
-
self.guess_mode = False
|
| 680 |
-
self.scale = 9.0
|
| 681 |
self.seed = -1
|
|
|
|
| 682 |
self.a_prompt = 'best quality, extremely detailed'
|
| 683 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 684 |
|
|
@@ -687,68 +916,130 @@ class seg2image:
|
|
| 687 |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
| 688 |
image = Image.open(image_path)
|
| 689 |
image = np.array(image)
|
| 690 |
-
prompt = instruct_text
|
| 691 |
img = resize_image(HWC3(image), self.image_resolution)
|
| 692 |
-
|
| 693 |
-
|
| 694 |
-
control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
|
| 695 |
-
control = torch.stack([control for _ in range(self.num_samples)], dim=0)
|
| 696 |
-
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 697 |
self.seed = random.randint(0, 65535)
|
| 698 |
seed_everything(self.seed)
|
| 699 |
-
|
| 700 |
-
|
| 701 |
-
|
| 702 |
-
|
| 703 |
-
|
| 704 |
-
|
| 705 |
-
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
|
| 706 |
-
if self.save_memory:
|
| 707 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 708 |
-
x_samples = self.model.decode_first_stage(samples)
|
| 709 |
-
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 710 |
updated_image_path = get_new_image_name(image_path, func_name="segment2image")
|
| 711 |
-
|
| 712 |
-
real_image.save(updated_image_path)
|
| 713 |
return updated_image_path
|
| 714 |
|
| 715 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 716 |
def __init__(self):
|
| 717 |
-
print("
|
| 718 |
-
self.
|
| 719 |
self.resolution = 512
|
| 720 |
|
| 721 |
def inference(self, inputs):
|
| 722 |
-
print("===>Starting image2depth Inference")
|
| 723 |
image = Image.open(inputs)
|
| 724 |
image = np.array(image)
|
| 725 |
image = HWC3(image)
|
| 726 |
-
detected_map, _ = self.detector(resize_image(image, self.resolution))
|
| 727 |
-
detected_map = HWC3(detected_map)
|
| 728 |
image = resize_image(image, self.resolution)
|
| 729 |
-
|
| 730 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 731 |
updated_image_path = get_new_image_name(inputs, func_name="depth")
|
| 732 |
-
|
| 733 |
-
image.save(updated_image_path)
|
| 734 |
return updated_image_path
|
| 735 |
|
| 736 |
-
class
|
| 737 |
def __init__(self, device):
|
| 738 |
-
|
| 739 |
-
|
| 740 |
-
|
| 741 |
-
|
| 742 |
-
self.
|
| 743 |
-
|
| 744 |
-
|
|
|
|
|
|
|
|
|
|
| 745 |
self.image_resolution = 512
|
| 746 |
-
self.
|
| 747 |
-
self.save_memory = False
|
| 748 |
-
self.strength = 1.0
|
| 749 |
-
self.guess_mode = False
|
| 750 |
-
self.scale = 9.0
|
| 751 |
self.seed = -1
|
|
|
|
| 752 |
self.a_prompt = 'best quality, extremely detailed'
|
| 753 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 754 |
|
|
@@ -757,69 +1048,146 @@ class depth2image:
|
|
| 757 |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
| 758 |
image = Image.open(image_path)
|
| 759 |
image = np.array(image)
|
| 760 |
-
prompt = instruct_text
|
| 761 |
img = resize_image(HWC3(image), self.image_resolution)
|
| 762 |
-
|
| 763 |
-
|
| 764 |
-
control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
|
| 765 |
-
control = torch.stack([control for _ in range(self.num_samples)], dim=0)
|
| 766 |
-
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 767 |
self.seed = random.randint(0, 65535)
|
| 768 |
seed_everything(self.seed)
|
| 769 |
-
|
| 770 |
-
|
| 771 |
-
|
| 772 |
-
|
| 773 |
-
|
| 774 |
-
|
| 775 |
-
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
|
| 776 |
-
if self.save_memory:
|
| 777 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 778 |
-
x_samples = self.model.decode_first_stage(samples)
|
| 779 |
-
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 780 |
updated_image_path = get_new_image_name(image_path, func_name="depth2image")
|
| 781 |
-
|
| 782 |
-
real_image.save(updated_image_path)
|
| 783 |
return updated_image_path
|
| 784 |
|
| 785 |
-
class
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 786 |
def __init__(self):
|
| 787 |
-
print("
|
| 788 |
-
self.
|
| 789 |
self.resolution = 512
|
| 790 |
-
self.
|
| 791 |
|
| 792 |
def inference(self, inputs):
|
| 793 |
-
print("===>Starting image2 normal Inference")
|
| 794 |
image = Image.open(inputs)
|
| 795 |
image = np.array(image)
|
| 796 |
image = HWC3(image)
|
| 797 |
-
_, detected_map = self.detector(resize_image(image, self.resolution), bg_th=self.bg_threshold)
|
| 798 |
-
detected_map = HWC3(detected_map)
|
| 799 |
image = resize_image(image, self.resolution)
|
| 800 |
-
|
| 801 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 802 |
updated_image_path = get_new_image_name(inputs, func_name="normal-map")
|
| 803 |
-
image = Image.fromarray(detected_map)
|
| 804 |
image.save(updated_image_path)
|
| 805 |
return updated_image_path
|
| 806 |
|
| 807 |
-
class
|
| 808 |
def __init__(self, device):
|
| 809 |
-
|
| 810 |
-
|
| 811 |
-
|
| 812 |
-
|
| 813 |
-
self.
|
| 814 |
-
|
| 815 |
-
|
|
|
|
|
|
|
|
|
|
| 816 |
self.image_resolution = 512
|
| 817 |
-
self.
|
| 818 |
-
self.save_memory = False
|
| 819 |
-
self.strength = 1.0
|
| 820 |
-
self.guess_mode = False
|
| 821 |
-
self.scale = 9.0
|
| 822 |
self.seed = -1
|
|
|
|
| 823 |
self.a_prompt = 'best quality, extremely detailed'
|
| 824 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 825 |
|
|
@@ -828,32 +1196,93 @@ class normal2image:
|
|
| 828 |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
| 829 |
image = Image.open(image_path)
|
| 830 |
image = np.array(image)
|
| 831 |
-
|
| 832 |
-
img =
|
| 833 |
-
|
| 834 |
-
H, W, C = img.shape
|
| 835 |
-
img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
|
| 836 |
-
control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
|
| 837 |
-
control = torch.stack([control for _ in range(self.num_samples)], dim=0)
|
| 838 |
-
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 839 |
self.seed = random.randint(0, 65535)
|
| 840 |
seed_everything(self.seed)
|
| 841 |
-
|
| 842 |
-
|
| 843 |
-
|
| 844 |
-
|
| 845 |
-
|
| 846 |
-
|
| 847 |
-
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
|
| 848 |
-
if self.save_memory:
|
| 849 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 850 |
-
x_samples = self.model.decode_first_stage(samples)
|
| 851 |
-
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 852 |
updated_image_path = get_new_image_name(image_path, func_name="normal2image")
|
| 853 |
-
|
| 854 |
-
real_image.save(updated_image_path)
|
| 855 |
return updated_image_path
|
| 856 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 857 |
class BLIPVQA:
|
| 858 |
def __init__(self, device):
|
| 859 |
print("Initializing BLIP VQA to %s" % device)
|
|
|
|
| 6 |
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
|
| 7 |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
|
| 8 |
from controlnet_aux import OpenposeDetector, MLSDdetector, HEDdetector
|
| 9 |
+
|
| 10 |
from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation
|
| 11 |
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
|
| 12 |
+
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
|
| 13 |
from ldm.util import instantiate_from_config
|
| 14 |
from ControlNet.cldm.model import create_model, load_state_dict
|
| 15 |
from ControlNet.cldm.ddim_hacked import DDIMSampler
|
|
|
|
| 28 |
import cv2
|
| 29 |
import random
|
| 30 |
|
| 31 |
+
def ade_palette():
|
| 32 |
+
return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
|
| 33 |
+
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
|
| 34 |
+
[230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
|
| 35 |
+
[150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
|
| 36 |
+
[143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
|
| 37 |
+
[0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
|
| 38 |
+
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
|
| 39 |
+
[255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
|
| 40 |
+
[255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
|
| 41 |
+
[224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
|
| 42 |
+
[255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
|
| 43 |
+
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
|
| 44 |
+
[140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
|
| 45 |
+
[255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
|
| 46 |
+
[255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
|
| 47 |
+
[11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
|
| 48 |
+
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
|
| 49 |
+
[255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
|
| 50 |
+
[0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
|
| 51 |
+
[173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
|
| 52 |
+
[255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
|
| 53 |
+
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
|
| 54 |
+
[255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
|
| 55 |
+
[0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
|
| 56 |
+
[0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
|
| 57 |
+
[143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
|
| 58 |
+
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
|
| 59 |
+
[255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
|
| 60 |
+
[92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
|
| 61 |
+
[163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
|
| 62 |
+
[255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
|
| 63 |
+
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
|
| 64 |
+
[10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
|
| 65 |
+
[255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
|
| 66 |
+
[41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
|
| 67 |
+
[71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
|
| 68 |
+
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
|
| 69 |
+
[102, 255, 0], [92, 0, 255]]
|
| 70 |
+
|
| 71 |
def HWC3(x):
|
| 72 |
assert x.dtype == np.uint8
|
| 73 |
if x.ndim == 2:
|
|
|
|
| 397 |
return updated_image_path
|
| 398 |
|
| 399 |
|
| 400 |
+
# class image2line:
|
| 401 |
+
# def __init__(self):
|
| 402 |
+
# print("Direct detect straight line...")
|
| 403 |
+
# self.detector = MLSDdetector()
|
| 404 |
+
# self.value_thresh = 0.1
|
| 405 |
+
# self.dis_thresh = 0.1
|
| 406 |
+
# self.resolution = 512
|
| 407 |
+
#
|
| 408 |
+
# def inference(self, inputs):
|
| 409 |
+
# print("===>Starting image2hough Inference")
|
| 410 |
+
# image = Image.open(inputs)
|
| 411 |
+
# image = np.array(image)
|
| 412 |
+
# image = HWC3(image)
|
| 413 |
+
# hough = self.detector(resize_image(image, self.resolution), self.value_thresh, self.dis_thresh)
|
| 414 |
+
# updated_image_path = get_new_image_name(inputs, func_name="line-of")
|
| 415 |
+
# hough = 255 - cv2.dilate(hough, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
|
| 416 |
+
# image = Image.fromarray(hough)
|
| 417 |
+
# image.save(updated_image_path)
|
| 418 |
+
# return updated_image_path
|
| 419 |
+
#
|
| 420 |
+
#
|
| 421 |
+
# class line2image:
|
| 422 |
+
# def __init__(self, device):
|
| 423 |
+
# print("Initialize the line2image model...")
|
| 424 |
+
# model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
|
| 425 |
+
# model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_mlsd.pth', location='cpu'))
|
| 426 |
+
# self.model = model.to(device)
|
| 427 |
+
# self.device = device
|
| 428 |
+
# self.ddim_sampler = DDIMSampler(self.model)
|
| 429 |
+
# self.ddim_steps = 20
|
| 430 |
+
# self.image_resolution = 512
|
| 431 |
+
# self.num_samples = 1
|
| 432 |
+
# self.save_memory = False
|
| 433 |
+
# self.strength = 1.0
|
| 434 |
+
# self.guess_mode = False
|
| 435 |
+
# self.scale = 9.0
|
| 436 |
+
# self.seed = -1
|
| 437 |
+
# self.a_prompt = 'best quality, extremely detailed'
|
| 438 |
+
# self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 439 |
+
#
|
| 440 |
+
# def inference(self, inputs):
|
| 441 |
+
# print("===>Starting line2image Inference")
|
| 442 |
+
# image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
| 443 |
+
# image = Image.open(image_path)
|
| 444 |
+
# image = np.array(image)
|
| 445 |
+
# image = 255 - image
|
| 446 |
+
# prompt = instruct_text
|
| 447 |
+
# img = resize_image(HWC3(image), self.image_resolution)
|
| 448 |
+
# H, W, C = img.shape
|
| 449 |
+
# img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
|
| 450 |
+
# control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
|
| 451 |
+
# control = torch.stack([control for _ in range(self.num_samples)], dim=0)
|
| 452 |
+
# control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 453 |
+
# self.seed = random.randint(0, 65535)
|
| 454 |
+
# seed_everything(self.seed)
|
| 455 |
+
# if self.save_memory:
|
| 456 |
+
# self.model.low_vram_shift(is_diffusing=False)
|
| 457 |
+
# cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
|
| 458 |
+
# un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
|
| 459 |
+
# shape = (4, H // 8, W // 8)
|
| 460 |
+
# self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
|
| 461 |
+
# samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
|
| 462 |
+
# if self.save_memory:
|
| 463 |
+
# self.model.low_vram_shift(is_diffusing=False)
|
| 464 |
+
# x_samples = self.model.decode_first_stage(samples)
|
| 465 |
+
# x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).\
|
| 466 |
+
# cpu().numpy().clip(0,255).astype(np.uint8)
|
| 467 |
+
# updated_image_path = get_new_image_name(image_path, func_name="line2image")
|
| 468 |
+
# real_image = Image.fromarray(x_samples[0]) # default the index0 image
|
| 469 |
+
# real_image.save(updated_image_path)
|
| 470 |
+
# return updated_image_path
|
|
|
|
| 471 |
|
| 472 |
+
class image2hed_new:
|
| 473 |
def __init__(self):
|
| 474 |
print("Direct detect soft HED boundary...")
|
| 475 |
+
self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet')
|
| 476 |
self.resolution = 512
|
| 477 |
|
| 478 |
def inference(self, inputs):
|
|
|
|
| 480 |
image = Image.open(inputs)
|
| 481 |
image = np.array(image)
|
| 482 |
image = HWC3(image)
|
| 483 |
+
image = Image.fromarray(resize_image(image, self.resolution))
|
| 484 |
+
hed = self.detector(image)
|
| 485 |
+
|
| 486 |
updated_image_path = get_new_image_name(inputs, func_name="hed-boundary")
|
| 487 |
+
hed.save(updated_image_path)
|
|
|
|
| 488 |
return updated_image_path
|
| 489 |
|
| 490 |
+
class hed2image_new:
|
|
|
|
| 491 |
def __init__(self, device):
|
| 492 |
print("Initialize the hed2image model...")
|
| 493 |
+
self.controlnet = ControlNetModel.from_pretrained(
|
| 494 |
+
"fusing/stable-diffusion-v1-5-controlnet-hed"
|
| 495 |
+
)
|
| 496 |
+
|
| 497 |
+
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 498 |
+
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None
|
| 499 |
+
)
|
| 500 |
+
|
| 501 |
+
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
| 502 |
+
self.pipe.to(device)
|
| 503 |
self.image_resolution = 512
|
| 504 |
+
self.num_inference_steps = 20
|
|
|
|
|
|
|
|
|
|
|
|
|
| 505 |
self.seed = -1
|
| 506 |
+
self.unconditional_guidance_scale = 9.0
|
| 507 |
self.a_prompt = 'best quality, extremely detailed'
|
| 508 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 509 |
|
|
|
|
| 512 |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
| 513 |
image = Image.open(image_path)
|
| 514 |
image = np.array(image)
|
|
|
|
| 515 |
img = resize_image(HWC3(image), self.image_resolution)
|
| 516 |
+
img = Image.fromarray(img)
|
| 517 |
+
|
|
|
|
|
|
|
|
|
|
| 518 |
self.seed = random.randint(0, 65535)
|
| 519 |
seed_everything(self.seed)
|
| 520 |
+
|
| 521 |
+
prompt = instruct_text
|
| 522 |
+
prompt = prompt + ', ' + self.a_prompt
|
| 523 |
+
image = \
|
| 524 |
+
self.pipe(prompt, img, num_inference_steps=self.num_inference_steps, eta=0.0, negative_prompt=self.n_prompt,
|
| 525 |
+
guidance_scale=self.unconditional_guidance_scale).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 526 |
updated_image_path = get_new_image_name(image_path, func_name="hed2image")
|
| 527 |
+
image.save(updated_image_path)
|
|
|
|
| 528 |
return updated_image_path
|
| 529 |
|
| 530 |
+
# class image2hed:
|
| 531 |
+
# def __init__(self):
|
| 532 |
+
# print("Direct detect soft HED boundary...")
|
| 533 |
+
# self.detector = HEDdetector()
|
| 534 |
+
# self.resolution = 512
|
| 535 |
+
#
|
| 536 |
+
# def inference(self, inputs):
|
| 537 |
+
# print("===>Starting image2hed Inference")
|
| 538 |
+
# image = Image.open(inputs)
|
| 539 |
+
# image = np.array(image)
|
| 540 |
+
# image = HWC3(image)
|
| 541 |
+
# hed = self.detector(resize_image(image, self.resolution))
|
| 542 |
+
# updated_image_path = get_new_image_name(inputs, func_name="hed-boundary")
|
| 543 |
+
# image = Image.fromarray(hed)
|
| 544 |
+
# image.save(updated_image_path)
|
| 545 |
+
# return updated_image_path
|
| 546 |
+
#
|
| 547 |
+
#
|
| 548 |
+
# class hed2image:
|
| 549 |
+
# def __init__(self, device):
|
| 550 |
+
# print("Initialize the hed2image model...")
|
| 551 |
+
# model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
|
| 552 |
+
# model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_hed.pth', location='cpu'))
|
| 553 |
+
# self.model = model.to(device)
|
| 554 |
+
# self.device = device
|
| 555 |
+
# self.ddim_sampler = DDIMSampler(self.model)
|
| 556 |
+
# self.ddim_steps = 20
|
| 557 |
+
# self.image_resolution = 512
|
| 558 |
+
# self.num_samples = 1
|
| 559 |
+
# self.save_memory = False
|
| 560 |
+
# self.strength = 1.0
|
| 561 |
+
# self.guess_mode = False
|
| 562 |
+
# self.scale = 9.0
|
| 563 |
+
# self.seed = -1
|
| 564 |
+
# self.a_prompt = 'best quality, extremely detailed'
|
| 565 |
+
# self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 566 |
+
#
|
| 567 |
+
# def inference(self, inputs):
|
| 568 |
+
# print("===>Starting hed2image Inference")
|
| 569 |
+
# image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
| 570 |
+
# image = Image.open(image_path)
|
| 571 |
+
# image = np.array(image)
|
| 572 |
+
# prompt = instruct_text
|
| 573 |
+
# img = resize_image(HWC3(image), self.image_resolution)
|
| 574 |
+
# H, W, C = img.shape
|
| 575 |
+
# img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
|
| 576 |
+
# control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
|
| 577 |
+
# control = torch.stack([control for _ in range(self.num_samples)], dim=0)
|
| 578 |
+
# control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 579 |
+
# self.seed = random.randint(0, 65535)
|
| 580 |
+
# seed_everything(self.seed)
|
| 581 |
+
# if self.save_memory:
|
| 582 |
+
# self.model.low_vram_shift(is_diffusing=False)
|
| 583 |
+
# cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
|
| 584 |
+
# un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
|
| 585 |
+
# shape = (4, H // 8, W // 8)
|
| 586 |
+
# self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13)
|
| 587 |
+
# samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
|
| 588 |
+
# if self.save_memory:
|
| 589 |
+
# self.model.low_vram_shift(is_diffusing=False)
|
| 590 |
+
# x_samples = self.model.decode_first_stage(samples)
|
| 591 |
+
# x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 592 |
+
# updated_image_path = get_new_image_name(image_path, func_name="hed2image")
|
| 593 |
+
# real_image = Image.fromarray(x_samples[0]) # default the index0 image
|
| 594 |
+
# real_image.save(updated_image_path)
|
| 595 |
+
# return updated_image_path
|
| 596 |
+
class image2scribble_new:
|
| 597 |
def __init__(self):
|
| 598 |
print("Direct detect scribble.")
|
| 599 |
+
self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet')
|
| 600 |
self.resolution = 512
|
| 601 |
|
| 602 |
def inference(self, inputs):
|
|
|
|
| 604 |
image = Image.open(inputs)
|
| 605 |
image = np.array(image)
|
| 606 |
image = HWC3(image)
|
|
|
|
|
|
|
| 607 |
image = resize_image(image, self.resolution)
|
| 608 |
+
image = Image.fromarray(image)
|
| 609 |
+
scribble = self.detector(image, scribble=True)
|
| 610 |
+
scribble = np.array(scribble)
|
| 611 |
+
scribble = 255 - scribble
|
| 612 |
+
scribble = Image.fromarray(scribble)
|
|
|
|
|
|
|
| 613 |
updated_image_path = get_new_image_name(inputs, func_name="scribble")
|
| 614 |
+
scribble.save(updated_image_path)
|
|
|
|
| 615 |
return updated_image_path
|
| 616 |
|
| 617 |
+
class scribble2image_new:
|
| 618 |
def __init__(self, device):
|
| 619 |
+
self.controlnet = ControlNetModel.from_pretrained(
|
| 620 |
+
"fusing/stable-diffusion-v1-5-controlnet-scribble"
|
| 621 |
+
)
|
| 622 |
+
|
| 623 |
+
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 624 |
+
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None
|
| 625 |
+
)
|
| 626 |
+
|
| 627 |
+
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
| 628 |
+
self.pipe.to(device)
|
| 629 |
self.image_resolution = 512
|
| 630 |
+
self.num_inference_steps = 20
|
|
|
|
|
|
|
|
|
|
|
|
|
| 631 |
self.seed = -1
|
| 632 |
+
self.unconditional_guidance_scale = 9.0
|
| 633 |
self.a_prompt = 'best quality, extremely detailed'
|
| 634 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 635 |
|
| 636 |
def inference(self, inputs):
|
| 637 |
print("===>Starting scribble2image Inference")
|
|
|
|
| 638 |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
| 639 |
image = Image.open(image_path)
|
| 640 |
image = np.array(image)
|
|
|
|
| 641 |
image = 255 - image
|
| 642 |
img = resize_image(HWC3(image), self.image_resolution)
|
| 643 |
+
img = Image.fromarray(img)
|
| 644 |
+
|
|
|
|
|
|
|
|
|
|
| 645 |
self.seed = random.randint(0, 65535)
|
| 646 |
seed_everything(self.seed)
|
| 647 |
+
|
| 648 |
+
prompt = instruct_text
|
| 649 |
+
prompt = prompt + ', ' + self.a_prompt
|
| 650 |
+
image = \
|
| 651 |
+
self.pipe(prompt, img, num_inference_steps=self.num_inference_steps, eta=0.0, negative_prompt=self.n_prompt,
|
| 652 |
+
guidance_scale=self.unconditional_guidance_scale).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 653 |
updated_image_path = get_new_image_name(image_path, func_name="scribble2image")
|
| 654 |
+
image.save(updated_image_path)
|
|
|
|
| 655 |
return updated_image_path
|
| 656 |
|
| 657 |
+
# class image2scribble:
|
| 658 |
+
# def __init__(self):
|
| 659 |
+
# print("Direct detect scribble.")
|
| 660 |
+
# self.detector = HEDdetector()
|
| 661 |
+
# self.resolution = 512
|
| 662 |
+
#
|
| 663 |
+
# def inference(self, inputs):
|
| 664 |
+
# print("===>Starting image2scribble Inference")
|
| 665 |
+
# image = Image.open(inputs)
|
| 666 |
+
# image = np.array(image)
|
| 667 |
+
# image = HWC3(image)
|
| 668 |
+
# detected_map = self.detector(resize_image(image, self.resolution))
|
| 669 |
+
# detected_map = HWC3(detected_map)
|
| 670 |
+
# image = resize_image(image, self.resolution)
|
| 671 |
+
# H, W, C = image.shape
|
| 672 |
+
# detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
| 673 |
+
# detected_map = nms(detected_map, 127, 3.0)
|
| 674 |
+
# detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0)
|
| 675 |
+
# detected_map[detected_map > 4] = 255
|
| 676 |
+
# detected_map[detected_map < 255] = 0
|
| 677 |
+
# detected_map = 255 - detected_map
|
| 678 |
+
# updated_image_path = get_new_image_name(inputs, func_name="scribble")
|
| 679 |
+
# image = Image.fromarray(detected_map)
|
| 680 |
+
# image.save(updated_image_path)
|
| 681 |
+
# return updated_image_path
|
| 682 |
+
#
|
| 683 |
+
# class scribble2image:
|
| 684 |
+
# def __init__(self, device):
|
| 685 |
+
# print("Initialize the scribble2image model...")
|
| 686 |
+
# model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
|
| 687 |
+
# model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_scribble.pth', location='cpu'))
|
| 688 |
+
# self.model = model.to(device)
|
| 689 |
+
# self.device = device
|
| 690 |
+
# self.ddim_sampler = DDIMSampler(self.model)
|
| 691 |
+
# self.ddim_steps = 20
|
| 692 |
+
# self.image_resolution = 512
|
| 693 |
+
# self.num_samples = 1
|
| 694 |
+
# self.save_memory = False
|
| 695 |
+
# self.strength = 1.0
|
| 696 |
+
# self.guess_mode = False
|
| 697 |
+
# self.scale = 9.0
|
| 698 |
+
# self.seed = -1
|
| 699 |
+
# self.a_prompt = 'best quality, extremely detailed'
|
| 700 |
+
# self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 701 |
+
#
|
| 702 |
+
# def inference(self, inputs):
|
| 703 |
+
# print("===>Starting scribble2image Inference")
|
| 704 |
+
# print(f'sketch device {self.device}')
|
| 705 |
+
# image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
| 706 |
+
# image = Image.open(image_path)
|
| 707 |
+
# image = np.array(image)
|
| 708 |
+
# prompt = instruct_text
|
| 709 |
+
# image = 255 - image
|
| 710 |
+
# img = resize_image(HWC3(image), self.image_resolution)
|
| 711 |
+
# H, W, C = img.shape
|
| 712 |
+
# img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
|
| 713 |
+
# control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
|
| 714 |
+
# control = torch.stack([control for _ in range(self.num_samples)], dim=0)
|
| 715 |
+
# control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 716 |
+
# self.seed = random.randint(0, 65535)
|
| 717 |
+
# seed_everything(self.seed)
|
| 718 |
+
# if self.save_memory:
|
| 719 |
+
# self.model.low_vram_shift(is_diffusing=False)
|
| 720 |
+
# cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
|
| 721 |
+
# un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
|
| 722 |
+
# shape = (4, H // 8, W // 8)
|
| 723 |
+
# self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13)
|
| 724 |
+
# samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
|
| 725 |
+
# if self.save_memory:
|
| 726 |
+
# self.model.low_vram_shift(is_diffusing=False)
|
| 727 |
+
# x_samples = self.model.decode_first_stage(samples)
|
| 728 |
+
# x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 729 |
+
# updated_image_path = get_new_image_name(image_path, func_name="scribble2image")
|
| 730 |
+
# real_image = Image.fromarray(x_samples[0]) # default the index0 image
|
| 731 |
+
# real_image.save(updated_image_path)
|
| 732 |
+
# return updated_image_path
|
| 733 |
+
|
| 734 |
+
class image2pose_new:
|
| 735 |
def __init__(self):
|
| 736 |
+
self.detector = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')
|
|
|
|
| 737 |
self.resolution = 512
|
| 738 |
|
| 739 |
def inference(self, inputs):
|
|
|
|
| 741 |
image = Image.open(inputs)
|
| 742 |
image = np.array(image)
|
| 743 |
image = HWC3(image)
|
|
|
|
|
|
|
| 744 |
image = resize_image(image, self.resolution)
|
| 745 |
+
image = Image.fromarray(image)
|
| 746 |
+
pose = self.detector(image)
|
| 747 |
+
|
| 748 |
updated_image_path = get_new_image_name(inputs, func_name="human-pose")
|
| 749 |
+
pose.save(updated_image_path)
|
|
|
|
| 750 |
return updated_image_path
|
| 751 |
|
| 752 |
+
class pose2image_new:
|
| 753 |
def __init__(self, device):
|
| 754 |
+
self.controlnet = ControlNetModel.from_pretrained(
|
| 755 |
+
"fusing/stable-diffusion-v1-5-controlnet-openpose"
|
| 756 |
+
)
|
| 757 |
+
|
| 758 |
+
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 759 |
+
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None
|
| 760 |
+
)
|
| 761 |
+
|
| 762 |
+
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
| 763 |
+
self.pipe.to(device)
|
| 764 |
self.image_resolution = 512
|
| 765 |
+
self.num_inference_steps = 20
|
|
|
|
|
|
|
|
|
|
|
|
|
| 766 |
self.seed = -1
|
| 767 |
+
self.unconditional_guidance_scale = 9.0
|
| 768 |
self.a_prompt = 'best quality, extremely detailed'
|
| 769 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 770 |
|
|
|
|
| 773 |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
| 774 |
image = Image.open(image_path)
|
| 775 |
image = np.array(image)
|
|
|
|
| 776 |
img = resize_image(HWC3(image), self.image_resolution)
|
| 777 |
+
img = Image.fromarray(img)
|
| 778 |
+
|
|
|
|
|
|
|
|
|
|
| 779 |
self.seed = random.randint(0, 65535)
|
| 780 |
seed_everything(self.seed)
|
| 781 |
+
|
| 782 |
+
prompt = instruct_text
|
| 783 |
+
prompt = prompt + ', ' + self.a_prompt
|
| 784 |
+
image = \
|
| 785 |
+
self.pipe(prompt, img, num_inference_steps=self.num_inference_steps, eta=0.0, negative_prompt=self.n_prompt,
|
| 786 |
+
guidance_scale=self.unconditional_guidance_scale).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 787 |
updated_image_path = get_new_image_name(image_path, func_name="pose2image")
|
| 788 |
+
image.save(updated_image_path)
|
|
|
|
| 789 |
return updated_image_path
|
| 790 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 791 |
|
| 792 |
+
# class image2pose:
|
| 793 |
+
# def __init__(self):
|
| 794 |
+
# print("Direct human pose.")
|
| 795 |
+
# self.detector = OpenposeDetector()
|
| 796 |
+
# self.resolution = 512
|
| 797 |
+
#
|
| 798 |
+
# def inference(self, inputs):
|
| 799 |
+
# print("===>Starting image2pose Inference")
|
| 800 |
+
# image = Image.open(inputs)
|
| 801 |
+
# image = np.array(image)
|
| 802 |
+
# image = HWC3(image)
|
| 803 |
+
# detected_map, _ = self.detector(resize_image(image, self.resolution))
|
| 804 |
+
# detected_map = HWC3(detected_map)
|
| 805 |
+
# image = resize_image(image, self.resolution)
|
| 806 |
+
# H, W, C = image.shape
|
| 807 |
+
# detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
| 808 |
+
# updated_image_path = get_new_image_name(inputs, func_name="human-pose")
|
| 809 |
+
# image = Image.fromarray(detected_map)
|
| 810 |
+
# image.save(updated_image_path)
|
| 811 |
+
# return updated_image_path
|
| 812 |
+
#
|
| 813 |
+
# class pose2image:
|
| 814 |
+
# def __init__(self, device):
|
| 815 |
+
# print("Initialize the pose2image model...")
|
| 816 |
+
# model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
|
| 817 |
+
# model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_openpose.pth', location='cpu'))
|
| 818 |
+
# self.model = model.to(device)
|
| 819 |
+
# self.device = device
|
| 820 |
+
# self.ddim_sampler = DDIMSampler(self.model)
|
| 821 |
+
# self.ddim_steps = 20
|
| 822 |
+
# self.image_resolution = 512
|
| 823 |
+
# self.num_samples = 1
|
| 824 |
+
# self.save_memory = False
|
| 825 |
+
# self.strength = 1.0
|
| 826 |
+
# self.guess_mode = False
|
| 827 |
+
# self.scale = 9.0
|
| 828 |
+
# self.seed = -1
|
| 829 |
+
# self.a_prompt = 'best quality, extremely detailed'
|
| 830 |
+
# self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 831 |
+
#
|
| 832 |
+
# def inference(self, inputs):
|
| 833 |
+
# print("===>Starting pose2image Inference")
|
| 834 |
+
# image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
| 835 |
+
# image = Image.open(image_path)
|
| 836 |
+
# image = np.array(image)
|
| 837 |
+
# prompt = instruct_text
|
| 838 |
+
# img = resize_image(HWC3(image), self.image_resolution)
|
| 839 |
+
# H, W, C = img.shape
|
| 840 |
+
# img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
|
| 841 |
+
# control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
|
| 842 |
+
# control = torch.stack([control for _ in range(self.num_samples)], dim=0)
|
| 843 |
+
# control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 844 |
+
# self.seed = random.randint(0, 65535)
|
| 845 |
+
# seed_everything(self.seed)
|
| 846 |
+
# if self.save_memory:
|
| 847 |
+
# self.model.low_vram_shift(is_diffusing=False)
|
| 848 |
+
# cond = {"c_concat": [control], "c_crossattn": [ self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
|
| 849 |
+
# un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
|
| 850 |
+
# shape = (4, H // 8, W // 8)
|
| 851 |
+
# self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13)
|
| 852 |
+
# samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
|
| 853 |
+
# if self.save_memory:
|
| 854 |
+
# self.model.low_vram_shift(is_diffusing=False)
|
| 855 |
+
# x_samples = self.model.decode_first_stage(samples)
|
| 856 |
+
# x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 857 |
+
# updated_image_path = get_new_image_name(image_path, func_name="pose2image")
|
| 858 |
+
# real_image = Image.fromarray(x_samples[0]) # default the index0 image
|
| 859 |
+
# real_image.save(updated_image_path)
|
| 860 |
+
# return updated_image_path
|
| 861 |
+
class image2seg_new:
|
| 862 |
+
def __init__(self):
|
| 863 |
+
print("Initialize image2segmentation Inference")
|
| 864 |
+
self.image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
|
| 865 |
+
self.image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")
|
| 866 |
+
self.resolution = 512
|
| 867 |
+
|
| 868 |
+
def inference(self, inputs):
|
| 869 |
+
image = Image.open(inputs)
|
| 870 |
+
image = np.array(image)
|
| 871 |
+
image = HWC3(image)
|
| 872 |
+
image = resize_image(image, self.resolution)
|
| 873 |
+
image = Image.fromarray(image)
|
| 874 |
+
pixel_values = self.image_processor(image, return_tensors="pt").pixel_values
|
| 875 |
+
|
| 876 |
+
with torch.no_grad():
|
| 877 |
+
outputs = self.image_segmentor(pixel_values)
|
| 878 |
+
|
| 879 |
+
seg = self.image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
|
| 880 |
+
|
| 881 |
+
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
|
| 882 |
+
|
| 883 |
+
palette = np.array(ade_palette())
|
| 884 |
+
|
| 885 |
+
for label, color in enumerate(palette):
|
| 886 |
+
color_seg[seg == label, :] = color
|
| 887 |
+
|
| 888 |
+
color_seg = color_seg.astype(np.uint8)
|
| 889 |
+
|
| 890 |
+
segmentation = Image.fromarray(color_seg)
|
| 891 |
updated_image_path = get_new_image_name(inputs, func_name="segmentation")
|
| 892 |
+
segmentation.save(updated_image_path)
|
|
|
|
| 893 |
return updated_image_path
|
| 894 |
|
| 895 |
+
class seg2image_new:
|
| 896 |
def __init__(self, device):
|
| 897 |
+
self.controlnet = ControlNetModel.from_pretrained(
|
| 898 |
+
"fusing/stable-diffusion-v1-5-controlnet-seg"
|
| 899 |
+
)
|
| 900 |
+
|
| 901 |
+
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 902 |
+
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None
|
| 903 |
+
)
|
| 904 |
+
|
| 905 |
+
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
| 906 |
+
self.pipe.to(device)
|
| 907 |
self.image_resolution = 512
|
| 908 |
+
self.num_inference_steps = 20
|
|
|
|
|
|
|
|
|
|
|
|
|
| 909 |
self.seed = -1
|
| 910 |
+
self.unconditional_guidance_scale = 9.0
|
| 911 |
self.a_prompt = 'best quality, extremely detailed'
|
| 912 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 913 |
|
|
|
|
| 916 |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
| 917 |
image = Image.open(image_path)
|
| 918 |
image = np.array(image)
|
|
|
|
| 919 |
img = resize_image(HWC3(image), self.image_resolution)
|
| 920 |
+
img = Image.fromarray(img)
|
| 921 |
+
|
|
|
|
|
|
|
|
|
|
| 922 |
self.seed = random.randint(0, 65535)
|
| 923 |
seed_everything(self.seed)
|
| 924 |
+
|
| 925 |
+
prompt = instruct_text
|
| 926 |
+
prompt = prompt + ', ' + self.a_prompt
|
| 927 |
+
image = \
|
| 928 |
+
self.pipe(prompt, img, num_inference_steps=self.num_inference_steps, eta=0.0, negative_prompt=self.n_prompt,
|
| 929 |
+
guidance_scale=self.unconditional_guidance_scale).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 930 |
updated_image_path = get_new_image_name(image_path, func_name="segment2image")
|
| 931 |
+
image.save(updated_image_path)
|
|
|
|
| 932 |
return updated_image_path
|
| 933 |
|
| 934 |
+
|
| 935 |
+
|
| 936 |
+
# class image2seg:
|
| 937 |
+
# def __init__(self):
|
| 938 |
+
# print("===>Starting image2seg Inference")
|
| 939 |
+
# print("Direct segmentations.")
|
| 940 |
+
# self.detector = UniformerDetector()
|
| 941 |
+
# self.resolution = 512
|
| 942 |
+
#
|
| 943 |
+
# def inference(self, inputs):
|
| 944 |
+
# print("===>Starting image2seg Inference")
|
| 945 |
+
# image = Image.open(inputs)
|
| 946 |
+
# image = np.array(image)
|
| 947 |
+
# image = HWC3(image)
|
| 948 |
+
# detected_map = self.detector(resize_image(image, self.resolution))
|
| 949 |
+
# detected_map = HWC3(detected_map)
|
| 950 |
+
# image = resize_image(image, self.resolution)
|
| 951 |
+
# H, W, C = image.shape
|
| 952 |
+
# detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
| 953 |
+
# updated_image_path = get_new_image_name(inputs, func_name="segmentation")
|
| 954 |
+
# image = Image.fromarray(detected_map)
|
| 955 |
+
# image.save(updated_image_path)
|
| 956 |
+
# return updated_image_path
|
| 957 |
+
#
|
| 958 |
+
# class seg2image:
|
| 959 |
+
# def __init__(self, device):
|
| 960 |
+
# print("Initialize the seg2image model...")
|
| 961 |
+
# model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
|
| 962 |
+
# model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_seg.pth', location='cpu'))
|
| 963 |
+
# self.model = model.to(device)
|
| 964 |
+
# self.device = device
|
| 965 |
+
# self.ddim_sampler = DDIMSampler(self.model)
|
| 966 |
+
# self.ddim_steps = 20
|
| 967 |
+
# self.image_resolution = 512
|
| 968 |
+
# self.num_samples = 1
|
| 969 |
+
# self.save_memory = False
|
| 970 |
+
# self.strength = 1.0
|
| 971 |
+
# self.guess_mode = False
|
| 972 |
+
# self.scale = 9.0
|
| 973 |
+
# self.seed = -1
|
| 974 |
+
# self.a_prompt = 'best quality, extremely detailed'
|
| 975 |
+
# self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 976 |
+
#
|
| 977 |
+
# def inference(self, inputs):
|
| 978 |
+
# print("===>Starting seg2image Inference")
|
| 979 |
+
# image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
| 980 |
+
# image = Image.open(image_path)
|
| 981 |
+
# image = np.array(image)
|
| 982 |
+
# prompt = instruct_text
|
| 983 |
+
# img = resize_image(HWC3(image), self.image_resolution)
|
| 984 |
+
# H, W, C = img.shape
|
| 985 |
+
# img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
|
| 986 |
+
# control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
|
| 987 |
+
# control = torch.stack([control for _ in range(self.num_samples)], dim=0)
|
| 988 |
+
# control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 989 |
+
# self.seed = random.randint(0, 65535)
|
| 990 |
+
# seed_everything(self.seed)
|
| 991 |
+
# if self.save_memory:
|
| 992 |
+
# self.model.low_vram_shift(is_diffusing=False)
|
| 993 |
+
# cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
|
| 994 |
+
# un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
|
| 995 |
+
# shape = (4, H // 8, W // 8)
|
| 996 |
+
# self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13)
|
| 997 |
+
# samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
|
| 998 |
+
# if self.save_memory:
|
| 999 |
+
# self.model.low_vram_shift(is_diffusing=False)
|
| 1000 |
+
# x_samples = self.model.decode_first_stage(samples)
|
| 1001 |
+
# x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 1002 |
+
# updated_image_path = get_new_image_name(image_path, func_name="segment2image")
|
| 1003 |
+
# real_image = Image.fromarray(x_samples[0]) # default the index0 image
|
| 1004 |
+
# real_image.save(updated_image_path)
|
| 1005 |
+
# return updated_image_path
|
| 1006 |
+
class image2depth_new:
|
| 1007 |
def __init__(self):
|
| 1008 |
+
print("initialize depth estimation")
|
| 1009 |
+
self.depth_estimator = pipeline('depth-estimation')
|
| 1010 |
self.resolution = 512
|
| 1011 |
|
| 1012 |
def inference(self, inputs):
|
|
|
|
| 1013 |
image = Image.open(inputs)
|
| 1014 |
image = np.array(image)
|
| 1015 |
image = HWC3(image)
|
|
|
|
|
|
|
| 1016 |
image = resize_image(image, self.resolution)
|
| 1017 |
+
image = Image.fromarray(image)
|
| 1018 |
+
depth = self.depth_estimator(image)['depth']
|
| 1019 |
+
depth = np.array(depth)
|
| 1020 |
+
depth = depth[:, :, None]
|
| 1021 |
+
depth = np.concatenate([depth, depth, depth], axis=2)
|
| 1022 |
+
depth = Image.fromarray(depth)
|
| 1023 |
updated_image_path = get_new_image_name(inputs, func_name="depth")
|
| 1024 |
+
depth.save(updated_image_path)
|
|
|
|
| 1025 |
return updated_image_path
|
| 1026 |
|
| 1027 |
+
class depth2image_new:
|
| 1028 |
def __init__(self, device):
|
| 1029 |
+
self.controlnet = ControlNetModel.from_pretrained(
|
| 1030 |
+
"fusing/stable-diffusion-v1-5-controlnet-depth"
|
| 1031 |
+
)
|
| 1032 |
+
|
| 1033 |
+
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 1034 |
+
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None
|
| 1035 |
+
)
|
| 1036 |
+
|
| 1037 |
+
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
| 1038 |
+
self.pipe.to(device)
|
| 1039 |
self.image_resolution = 512
|
| 1040 |
+
self.num_inference_steps = 20
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1041 |
self.seed = -1
|
| 1042 |
+
self.unconditional_guidance_scale = 9.0
|
| 1043 |
self.a_prompt = 'best quality, extremely detailed'
|
| 1044 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 1045 |
|
|
|
|
| 1048 |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
| 1049 |
image = Image.open(image_path)
|
| 1050 |
image = np.array(image)
|
|
|
|
| 1051 |
img = resize_image(HWC3(image), self.image_resolution)
|
| 1052 |
+
img = Image.fromarray(img)
|
| 1053 |
+
|
|
|
|
|
|
|
|
|
|
| 1054 |
self.seed = random.randint(0, 65535)
|
| 1055 |
seed_everything(self.seed)
|
| 1056 |
+
|
| 1057 |
+
prompt = instruct_text
|
| 1058 |
+
prompt = prompt + ', ' + self.a_prompt
|
| 1059 |
+
image = \
|
| 1060 |
+
self.pipe(prompt, img, num_inference_steps=self.num_inference_steps, eta=0.0, negative_prompt=self.n_prompt,
|
| 1061 |
+
guidance_scale=self.unconditional_guidance_scale).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1062 |
updated_image_path = get_new_image_name(image_path, func_name="depth2image")
|
| 1063 |
+
image.save(updated_image_path)
|
|
|
|
| 1064 |
return updated_image_path
|
| 1065 |
|
| 1066 |
+
# class image2depth:
|
| 1067 |
+
# def __init__(self):
|
| 1068 |
+
# print("Direct depth estimation.")
|
| 1069 |
+
# self.detector = MidasDetector()
|
| 1070 |
+
# self.resolution = 512
|
| 1071 |
+
#
|
| 1072 |
+
# def inference(self, inputs):
|
| 1073 |
+
# print("===>Starting image2depth Inference")
|
| 1074 |
+
# image = Image.open(inputs)
|
| 1075 |
+
# image = np.array(image)
|
| 1076 |
+
# image = HWC3(image)
|
| 1077 |
+
# detected_map, _ = self.detector(resize_image(image, self.resolution))
|
| 1078 |
+
# detected_map = HWC3(detected_map)
|
| 1079 |
+
# image = resize_image(image, self.resolution)
|
| 1080 |
+
# H, W, C = image.shape
|
| 1081 |
+
# detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
| 1082 |
+
# updated_image_path = get_new_image_name(inputs, func_name="depth")
|
| 1083 |
+
# image = Image.fromarray(detected_map)
|
| 1084 |
+
# image.save(updated_image_path)
|
| 1085 |
+
# return updated_image_path
|
| 1086 |
+
#
|
| 1087 |
+
# class depth2image:
|
| 1088 |
+
# def __init__(self, device):
|
| 1089 |
+
# print("Initialize depth2image model...")
|
| 1090 |
+
# model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
|
| 1091 |
+
# model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_depth.pth', location='cpu'))
|
| 1092 |
+
# self.model = model.to(device)
|
| 1093 |
+
# self.device = device
|
| 1094 |
+
# self.ddim_sampler = DDIMSampler(self.model)
|
| 1095 |
+
# self.ddim_steps = 20
|
| 1096 |
+
# self.image_resolution = 512
|
| 1097 |
+
# self.num_samples = 1
|
| 1098 |
+
# self.save_memory = False
|
| 1099 |
+
# self.strength = 1.0
|
| 1100 |
+
# self.guess_mode = False
|
| 1101 |
+
# self.scale = 9.0
|
| 1102 |
+
# self.seed = -1
|
| 1103 |
+
# self.a_prompt = 'best quality, extremely detailed'
|
| 1104 |
+
# self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 1105 |
+
#
|
| 1106 |
+
# def inference(self, inputs):
|
| 1107 |
+
# print("===>Starting depth2image Inference")
|
| 1108 |
+
# image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
| 1109 |
+
# image = Image.open(image_path)
|
| 1110 |
+
# image = np.array(image)
|
| 1111 |
+
# prompt = instruct_text
|
| 1112 |
+
# img = resize_image(HWC3(image), self.image_resolution)
|
| 1113 |
+
# H, W, C = img.shape
|
| 1114 |
+
# img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
|
| 1115 |
+
# control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
|
| 1116 |
+
# control = torch.stack([control for _ in range(self.num_samples)], dim=0)
|
| 1117 |
+
# control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 1118 |
+
# self.seed = random.randint(0, 65535)
|
| 1119 |
+
# seed_everything(self.seed)
|
| 1120 |
+
# if self.save_memory:
|
| 1121 |
+
# self.model.low_vram_shift(is_diffusing=False)
|
| 1122 |
+
# cond = {"c_concat": [control], "c_crossattn": [ self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
|
| 1123 |
+
# un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
|
| 1124 |
+
# shape = (4, H // 8, W // 8)
|
| 1125 |
+
# self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
|
| 1126 |
+
# samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
|
| 1127 |
+
# if self.save_memory:
|
| 1128 |
+
# self.model.low_vram_shift(is_diffusing=False)
|
| 1129 |
+
# x_samples = self.model.decode_first_stage(samples)
|
| 1130 |
+
# x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 1131 |
+
# updated_image_path = get_new_image_name(image_path, func_name="depth2image")
|
| 1132 |
+
# real_image = Image.fromarray(x_samples[0]) # default the index0 image
|
| 1133 |
+
# real_image.save(updated_image_path)
|
| 1134 |
+
# return updated_image_path
|
| 1135 |
+
|
| 1136 |
+
class image2normal_new:
|
| 1137 |
def __init__(self):
|
| 1138 |
+
print("normal estimation")
|
| 1139 |
+
self.depth_estimator = pipeline("depth-estimation", model="Intel/dpt-hybrid-midas")
|
| 1140 |
self.resolution = 512
|
| 1141 |
+
self.bg_threhold = 0.4
|
| 1142 |
|
| 1143 |
def inference(self, inputs):
|
|
|
|
| 1144 |
image = Image.open(inputs)
|
| 1145 |
image = np.array(image)
|
| 1146 |
image = HWC3(image)
|
|
|
|
|
|
|
| 1147 |
image = resize_image(image, self.resolution)
|
| 1148 |
+
image = Image.fromarray(image)
|
| 1149 |
+
image = self.depth_estimator(image)['predicted_depth'][0]
|
| 1150 |
+
|
| 1151 |
+
image = image.numpy()
|
| 1152 |
+
|
| 1153 |
+
image_depth = image.copy()
|
| 1154 |
+
image_depth -= np.min(image_depth)
|
| 1155 |
+
image_depth /= np.max(image_depth)
|
| 1156 |
+
|
| 1157 |
+
bg_threhold = 0.4
|
| 1158 |
+
|
| 1159 |
+
x = cv2.Sobel(image, cv2.CV_32F, 1, 0, ksize=3)
|
| 1160 |
+
x[image_depth < bg_threhold] = 0
|
| 1161 |
+
|
| 1162 |
+
y = cv2.Sobel(image, cv2.CV_32F, 0, 1, ksize=3)
|
| 1163 |
+
y[image_depth < bg_threhold] = 0
|
| 1164 |
+
|
| 1165 |
+
z = np.ones_like(x) * np.pi * 2.0
|
| 1166 |
+
|
| 1167 |
+
image = np.stack([x, y, z], axis=2)
|
| 1168 |
+
image /= np.sum(image ** 2.0, axis=2, keepdims=True) ** 0.5
|
| 1169 |
+
image = (image * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
|
| 1170 |
+
image = Image.fromarray(image)
|
| 1171 |
updated_image_path = get_new_image_name(inputs, func_name="normal-map")
|
|
|
|
| 1172 |
image.save(updated_image_path)
|
| 1173 |
return updated_image_path
|
| 1174 |
|
| 1175 |
+
class normal2image_new:
|
| 1176 |
def __init__(self, device):
|
| 1177 |
+
self.controlnet = ControlNetModel.from_pretrained(
|
| 1178 |
+
"fusing/stable-diffusion-v1-5-controlnet-normal"
|
| 1179 |
+
)
|
| 1180 |
+
|
| 1181 |
+
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 1182 |
+
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None
|
| 1183 |
+
)
|
| 1184 |
+
|
| 1185 |
+
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
| 1186 |
+
self.pipe.to(device)
|
| 1187 |
self.image_resolution = 512
|
| 1188 |
+
self.num_inference_steps = 20
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1189 |
self.seed = -1
|
| 1190 |
+
self.unconditional_guidance_scale = 9.0
|
| 1191 |
self.a_prompt = 'best quality, extremely detailed'
|
| 1192 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 1193 |
|
|
|
|
| 1196 |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
| 1197 |
image = Image.open(image_path)
|
| 1198 |
image = np.array(image)
|
| 1199 |
+
img = resize_image(HWC3(image), self.image_resolution)
|
| 1200 |
+
img = Image.fromarray(img)
|
| 1201 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1202 |
self.seed = random.randint(0, 65535)
|
| 1203 |
seed_everything(self.seed)
|
| 1204 |
+
|
| 1205 |
+
prompt = instruct_text
|
| 1206 |
+
prompt = prompt + ', ' + self.a_prompt
|
| 1207 |
+
image = \
|
| 1208 |
+
self.pipe(prompt, img, num_inference_steps=self.num_inference_steps, eta=0.0, negative_prompt=self.n_prompt,
|
| 1209 |
+
guidance_scale=self.unconditional_guidance_scale).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1210 |
updated_image_path = get_new_image_name(image_path, func_name="normal2image")
|
| 1211 |
+
image.save(updated_image_path)
|
|
|
|
| 1212 |
return updated_image_path
|
| 1213 |
|
| 1214 |
+
# class image2normal:
|
| 1215 |
+
# def __init__(self):
|
| 1216 |
+
# print("Direct normal estimation.")
|
| 1217 |
+
# self.detector = MidasDetector()
|
| 1218 |
+
# self.resolution = 512
|
| 1219 |
+
# self.bg_threshold = 0.4
|
| 1220 |
+
#
|
| 1221 |
+
# def inference(self, inputs):
|
| 1222 |
+
# print("===>Starting image2 normal Inference")
|
| 1223 |
+
# image = Image.open(inputs)
|
| 1224 |
+
# image = np.array(image)
|
| 1225 |
+
# image = HWC3(image)
|
| 1226 |
+
# _, detected_map = self.detector(resize_image(image, self.resolution), bg_th=self.bg_threshold)
|
| 1227 |
+
# detected_map = HWC3(detected_map)
|
| 1228 |
+
# image = resize_image(image, self.resolution)
|
| 1229 |
+
# H, W, C = image.shape
|
| 1230 |
+
# detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
| 1231 |
+
# updated_image_path = get_new_image_name(inputs, func_name="normal-map")
|
| 1232 |
+
# image = Image.fromarray(detected_map)
|
| 1233 |
+
# image.save(updated_image_path)
|
| 1234 |
+
# return updated_image_path
|
| 1235 |
+
#
|
| 1236 |
+
# class normal2image:
|
| 1237 |
+
# def __init__(self, device):
|
| 1238 |
+
# print("Initialize normal2image model...")
|
| 1239 |
+
# model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
|
| 1240 |
+
# model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_normal.pth', location='cpu'))
|
| 1241 |
+
# self.model = model.to(device)
|
| 1242 |
+
# self.device = device
|
| 1243 |
+
# self.ddim_sampler = DDIMSampler(self.model)
|
| 1244 |
+
# self.ddim_steps = 20
|
| 1245 |
+
# self.image_resolution = 512
|
| 1246 |
+
# self.num_samples = 1
|
| 1247 |
+
# self.save_memory = False
|
| 1248 |
+
# self.strength = 1.0
|
| 1249 |
+
# self.guess_mode = False
|
| 1250 |
+
# self.scale = 9.0
|
| 1251 |
+
# self.seed = -1
|
| 1252 |
+
# self.a_prompt = 'best quality, extremely detailed'
|
| 1253 |
+
# self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 1254 |
+
#
|
| 1255 |
+
# def inference(self, inputs):
|
| 1256 |
+
# print("===>Starting normal2image Inference")
|
| 1257 |
+
# image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
| 1258 |
+
# image = Image.open(image_path)
|
| 1259 |
+
# image = np.array(image)
|
| 1260 |
+
# prompt = instruct_text
|
| 1261 |
+
# img = image[:, :, ::-1].copy()
|
| 1262 |
+
# img = resize_image(HWC3(img), self.image_resolution)
|
| 1263 |
+
# H, W, C = img.shape
|
| 1264 |
+
# img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
|
| 1265 |
+
# control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
|
| 1266 |
+
# control = torch.stack([control for _ in range(self.num_samples)], dim=0)
|
| 1267 |
+
# control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 1268 |
+
# self.seed = random.randint(0, 65535)
|
| 1269 |
+
# seed_everything(self.seed)
|
| 1270 |
+
# if self.save_memory:
|
| 1271 |
+
# self.model.low_vram_shift(is_diffusing=False)
|
| 1272 |
+
# cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
|
| 1273 |
+
# un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
|
| 1274 |
+
# shape = (4, H // 8, W // 8)
|
| 1275 |
+
# self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13)
|
| 1276 |
+
# samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
|
| 1277 |
+
# if self.save_memory:
|
| 1278 |
+
# self.model.low_vram_shift(is_diffusing=False)
|
| 1279 |
+
# x_samples = self.model.decode_first_stage(samples)
|
| 1280 |
+
# x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 1281 |
+
# updated_image_path = get_new_image_name(image_path, func_name="normal2image")
|
| 1282 |
+
# real_image = Image.fromarray(x_samples[0]) # default the index0 image
|
| 1283 |
+
# real_image.save(updated_image_path)
|
| 1284 |
+
# return updated_image_path
|
| 1285 |
+
|
| 1286 |
class BLIPVQA:
|
| 1287 |
def __init__(self, device):
|
| 1288 |
print("Initializing BLIP VQA to %s" % device)
|