Spaces:
Runtime error
Runtime error
Commit
·
d911096
1
Parent(s):
569cb36
introduce control net from diffusers
Browse files- app.py +18 -18
- requirements.txt +1 -0
- visual_foundation_models.py +193 -44
app.py
CHANGED
|
@@ -118,24 +118,24 @@ class ConversationBot:
|
|
| 118 |
self.edit = ImageEditing(device="cuda:0")
|
| 119 |
self.i2t = ImageCaptioning(device="cuda:0")
|
| 120 |
self.t2i = T2I(device="cuda:0")
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
self.memory = ConversationBufferMemory(memory_key="chat_history", output_key='output')
|
| 140 |
self.tools = [
|
| 141 |
Tool(name="Get Photo Description", func=self.i2t.inference,
|
|
|
|
| 118 |
self.edit = ImageEditing(device="cuda:0")
|
| 119 |
self.i2t = ImageCaptioning(device="cuda:0")
|
| 120 |
self.t2i = T2I(device="cuda:0")
|
| 121 |
+
self.image2canny = image2canny()
|
| 122 |
+
self.canny2image = canny2image(device="cuda:1")
|
| 123 |
+
self.image2line = image2line()
|
| 124 |
+
self.line2image = line2image(device="cuda:1")
|
| 125 |
+
self.image2hed = image2hed()
|
| 126 |
+
self.hed2image = hed2image(device="cuda:2")
|
| 127 |
+
self.image2scribble = image2scribble()
|
| 128 |
+
self.scribble2image = scribble2image(device="cuda:3")
|
| 129 |
+
self.image2pose = image2pose()
|
| 130 |
+
self.pose2image = pose2image(device="cuda:3")
|
| 131 |
+
self.BLIPVQA = BLIPVQA(device="cuda:4")
|
| 132 |
+
self.image2seg = image2seg()
|
| 133 |
+
self.seg2image = seg2image(device="cuda:7")
|
| 134 |
+
self.image2depth = image2depth()
|
| 135 |
+
self.depth2image = depth2image(device="cuda:7")
|
| 136 |
+
self.image2normal = image2normal()
|
| 137 |
+
self.normal2image = normal2image(device="cuda:5")
|
| 138 |
+
self.pix2pix = Pix2Pix(device="cuda:0")
|
| 139 |
self.memory = ConversationBufferMemory(memory_key="chat_history", output_key='output')
|
| 140 |
self.tools = [
|
| 141 |
Tool(name="Get Photo Description", func=self.i2t.inference,
|
requirements.txt
CHANGED
|
@@ -28,3 +28,4 @@ diffusers==0.14.0
|
|
| 28 |
gradio
|
| 29 |
openai
|
| 30 |
accelerate
|
|
|
|
|
|
| 28 |
gradio
|
| 29 |
openai
|
| 30 |
accelerate
|
| 31 |
+
controlnet-aux==0.0.1
|
visual_foundation_models.py
CHANGED
|
@@ -1,19 +1,22 @@
|
|
| 1 |
import os
|
|
|
|
|
|
|
| 2 |
from diffusers import StableDiffusionPipeline
|
| 3 |
from diffusers import StableDiffusionInpaintPipeline
|
| 4 |
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
|
|
|
|
|
|
|
| 5 |
from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation
|
| 6 |
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
|
| 7 |
from ldm.util import instantiate_from_config
|
| 8 |
from ControlNet.cldm.model import create_model, load_state_dict
|
| 9 |
from ControlNet.cldm.ddim_hacked import DDIMSampler
|
| 10 |
-
from ControlNet.annotator.canny import CannyDetector
|
| 11 |
-
from ControlNet.annotator.mlsd import MLSDdetector
|
| 12 |
-
from ControlNet.annotator.
|
| 13 |
-
from ControlNet.annotator.
|
| 14 |
-
from ControlNet.annotator.
|
| 15 |
-
from ControlNet.annotator.
|
| 16 |
-
from ControlNet.annotator.midas import MidasDetector
|
| 17 |
from PIL import Image
|
| 18 |
import torch
|
| 19 |
import numpy as np
|
|
@@ -23,6 +26,36 @@ from pytorch_lightning import seed_everything
|
|
| 23 |
import cv2
|
| 24 |
import random
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
def get_new_image_name(org_img_name, func_name="update"):
|
| 27 |
head_tail = os.path.split(org_img_name)
|
| 28 |
head = head_tail[0]
|
|
@@ -139,40 +172,41 @@ class ImageCaptioning:
|
|
| 139 |
captions = self.processor.decode(out[0], skip_special_tokens=True)
|
| 140 |
return captions
|
| 141 |
|
| 142 |
-
class
|
| 143 |
def __init__(self):
|
| 144 |
print("Direct detect canny.")
|
| 145 |
-
self.
|
| 146 |
-
self.
|
| 147 |
-
self.high_thresh = 200
|
| 148 |
|
| 149 |
def inference(self, inputs):
|
| 150 |
print("===>Starting image2canny Inference")
|
| 151 |
image = Image.open(inputs)
|
| 152 |
image = np.array(image)
|
| 153 |
-
canny =
|
|
|
|
|
|
|
| 154 |
canny = 255 - canny
|
| 155 |
-
|
| 156 |
updated_image_path = get_new_image_name(inputs, func_name="edge")
|
| 157 |
-
|
| 158 |
return updated_image_path
|
| 159 |
|
| 160 |
-
class
|
| 161 |
def __init__(self, device):
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
self.
|
| 167 |
-
|
| 168 |
-
|
|
|
|
|
|
|
|
|
|
| 169 |
self.image_resolution = 512
|
| 170 |
-
self.
|
| 171 |
-
self.save_memory = False
|
| 172 |
-
self.strength = 1.0
|
| 173 |
-
self.guess_mode = False
|
| 174 |
-
self.scale = 9.0
|
| 175 |
self.seed = -1
|
|
|
|
| 176 |
self.a_prompt = 'best quality, extremely detailed'
|
| 177 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 178 |
|
|
@@ -184,28 +218,143 @@ class canny2image:
|
|
| 184 |
image = 255 - image
|
| 185 |
prompt = instruct_text
|
| 186 |
img = resize_image(HWC3(image), self.image_resolution)
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
control = torch.stack([control for _ in range(self.num_samples)], dim=0)
|
| 190 |
-
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 191 |
self.seed = random.randint(0, 65535)
|
| 192 |
seed_everything(self.seed)
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
|
| 196 |
-
un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
|
| 197 |
-
shape = (4, H // 8, W // 8)
|
| 198 |
-
self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
|
| 199 |
-
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
|
| 200 |
-
if self.save_memory:
|
| 201 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 202 |
-
x_samples = self.model.decode_first_stage(samples)
|
| 203 |
-
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 204 |
updated_image_path = get_new_image_name(image_path, func_name="canny2image")
|
| 205 |
-
|
| 206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
return updated_image_path
|
| 208 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
class image2line:
|
| 210 |
def __init__(self):
|
| 211 |
print("Direct detect straight line...")
|
|
|
|
| 1 |
import os
|
| 2 |
+
|
| 3 |
+
import diffusers.utils
|
| 4 |
from diffusers import StableDiffusionPipeline
|
| 5 |
from diffusers import StableDiffusionInpaintPipeline
|
| 6 |
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
|
| 7 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
|
| 8 |
+
from controlnet_aux import OpenposeDetector, MLSDdetector, HEDdetector
|
| 9 |
from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation
|
| 10 |
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
|
| 11 |
from ldm.util import instantiate_from_config
|
| 12 |
from ControlNet.cldm.model import create_model, load_state_dict
|
| 13 |
from ControlNet.cldm.ddim_hacked import DDIMSampler
|
| 14 |
+
# from ControlNet.annotator.canny import CannyDetector
|
| 15 |
+
# from ControlNet.annotator.mlsd import MLSDdetector
|
| 16 |
+
# from ControlNet.annotator.hed import HEDdetector, nms
|
| 17 |
+
# from ControlNet.annotator.openpose import OpenposeDetector
|
| 18 |
+
# from ControlNet.annotator.uniformer import UniformerDetector
|
| 19 |
+
# from ControlNet.annotator.midas import MidasDetector
|
|
|
|
| 20 |
from PIL import Image
|
| 21 |
import torch
|
| 22 |
import numpy as np
|
|
|
|
| 26 |
import cv2
|
| 27 |
import random
|
| 28 |
|
| 29 |
+
def HWC3(x):
|
| 30 |
+
assert x.dtype == np.uint8
|
| 31 |
+
if x.ndim == 2:
|
| 32 |
+
x = x[:, :, None]
|
| 33 |
+
assert x.ndim == 3
|
| 34 |
+
H, W, C = x.shape
|
| 35 |
+
assert C == 1 or C == 3 or C == 4
|
| 36 |
+
if C == 3:
|
| 37 |
+
return x
|
| 38 |
+
if C == 1:
|
| 39 |
+
return np.concatenate([x, x, x], axis=2)
|
| 40 |
+
if C == 4:
|
| 41 |
+
color = x[:, :, 0:3].astype(np.float32)
|
| 42 |
+
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
|
| 43 |
+
y = color * alpha + 255.0 * (1.0 - alpha)
|
| 44 |
+
y = y.clip(0, 255).astype(np.uint8)
|
| 45 |
+
return y
|
| 46 |
+
|
| 47 |
+
def resize_image(input_image, resolution):
|
| 48 |
+
H, W, C = input_image.shape
|
| 49 |
+
H = float(H)
|
| 50 |
+
W = float(W)
|
| 51 |
+
k = float(resolution) / min(H, W)
|
| 52 |
+
H *= k
|
| 53 |
+
W *= k
|
| 54 |
+
H = int(np.round(H / 64.0)) * 64
|
| 55 |
+
W = int(np.round(W / 64.0)) * 64
|
| 56 |
+
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
|
| 57 |
+
return img
|
| 58 |
+
|
| 59 |
def get_new_image_name(org_img_name, func_name="update"):
|
| 60 |
head_tail = os.path.split(org_img_name)
|
| 61 |
head = head_tail[0]
|
|
|
|
| 172 |
captions = self.processor.decode(out[0], skip_special_tokens=True)
|
| 173 |
return captions
|
| 174 |
|
| 175 |
+
class image2canny_new:
|
| 176 |
def __init__(self):
|
| 177 |
print("Direct detect canny.")
|
| 178 |
+
self.low_threshold = 100
|
| 179 |
+
self.high_threshold = 200
|
|
|
|
| 180 |
|
| 181 |
def inference(self, inputs):
|
| 182 |
print("===>Starting image2canny Inference")
|
| 183 |
image = Image.open(inputs)
|
| 184 |
image = np.array(image)
|
| 185 |
+
canny = cv2.Canny(image, self.low_threshold, self.high_threshold)
|
| 186 |
+
canny = canny[:, :, None]
|
| 187 |
+
canny = np.concatenate([canny, canny, canny], axis=2)
|
| 188 |
canny = 255 - canny
|
| 189 |
+
canny = Image.fromarray(canny)
|
| 190 |
updated_image_path = get_new_image_name(inputs, func_name="edge")
|
| 191 |
+
canny.save(updated_image_path)
|
| 192 |
return updated_image_path
|
| 193 |
|
| 194 |
+
class canny2image_new:
|
| 195 |
def __init__(self, device):
|
| 196 |
+
self.controlnet = ControlNetModel.from_pretrained(
|
| 197 |
+
"fusing/stable-diffusion-v1-5-controlnet-canny"
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 201 |
+
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
| 205 |
+
self.pipe.to(device)
|
| 206 |
self.image_resolution = 512
|
| 207 |
+
self.num_inference_steps = 20
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
self.seed = -1
|
| 209 |
+
self.unconditional_guidance_scale = 9.0
|
| 210 |
self.a_prompt = 'best quality, extremely detailed'
|
| 211 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 212 |
|
|
|
|
| 218 |
image = 255 - image
|
| 219 |
prompt = instruct_text
|
| 220 |
img = resize_image(HWC3(image), self.image_resolution)
|
| 221 |
+
img = Image.fromarray(img)
|
| 222 |
+
|
|
|
|
|
|
|
| 223 |
self.seed = random.randint(0, 65535)
|
| 224 |
seed_everything(self.seed)
|
| 225 |
+
prompt = prompt + ', ' + self.a_prompt
|
| 226 |
+
image = self.pipe(prompt, img, num_inference_steps=self.num_inference_steps, eta=0.0, negative_prompt=self.n_prompt, guidance_scale=self.unconditional_guidance_scale).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
updated_image_path = get_new_image_name(image_path, func_name="canny2image")
|
| 228 |
+
image.save(updated_image_path)
|
| 229 |
+
return updated_image_path
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
# class image2canny:
|
| 233 |
+
# def __init__(self):
|
| 234 |
+
# print("Direct detect canny.")
|
| 235 |
+
# self.detector = CannyDetector()
|
| 236 |
+
# self.low_thresh = 100
|
| 237 |
+
# self.high_thresh = 200
|
| 238 |
+
#
|
| 239 |
+
# def inference(self, inputs):
|
| 240 |
+
# print("===>Starting image2canny Inference")
|
| 241 |
+
# image = Image.open(inputs)
|
| 242 |
+
# image = np.array(image)
|
| 243 |
+
# canny = self.detector(image, self.low_thresh, self.high_thresh)
|
| 244 |
+
# canny = 255 - canny
|
| 245 |
+
# image = Image.fromarray(canny)
|
| 246 |
+
# updated_image_path = get_new_image_name(inputs, func_name="edge")
|
| 247 |
+
# image.save(updated_image_path)
|
| 248 |
+
# return updated_image_path
|
| 249 |
+
#
|
| 250 |
+
# class canny2image:
|
| 251 |
+
# def __init__(self, device):
|
| 252 |
+
# print("Initialize the canny2image model.")
|
| 253 |
+
# model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
|
| 254 |
+
# model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_canny.pth', location='cpu'))
|
| 255 |
+
# self.model = model.to(device)
|
| 256 |
+
# self.device = device
|
| 257 |
+
# self.ddim_sampler = DDIMSampler(self.model)
|
| 258 |
+
# self.ddim_steps = 20
|
| 259 |
+
# self.image_resolution = 512
|
| 260 |
+
# self.num_samples = 1
|
| 261 |
+
# self.save_memory = False
|
| 262 |
+
# self.strength = 1.0
|
| 263 |
+
# self.guess_mode = False
|
| 264 |
+
# self.scale = 9.0
|
| 265 |
+
# self.seed = -1
|
| 266 |
+
# self.a_prompt = 'best quality, extremely detailed'
|
| 267 |
+
# self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 268 |
+
#
|
| 269 |
+
# def inference(self, inputs):
|
| 270 |
+
# print("===>Starting canny2image Inference")
|
| 271 |
+
# image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
| 272 |
+
# image = Image.open(image_path)
|
| 273 |
+
# image = np.array(image)
|
| 274 |
+
# image = 255 - image
|
| 275 |
+
# prompt = instruct_text
|
| 276 |
+
# img = resize_image(HWC3(image), self.image_resolution)
|
| 277 |
+
# H, W, C = img.shape
|
| 278 |
+
# control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
|
| 279 |
+
# control = torch.stack([control for _ in range(self.num_samples)], dim=0)
|
| 280 |
+
# control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 281 |
+
# self.seed = random.randint(0, 65535)
|
| 282 |
+
# seed_everything(self.seed)
|
| 283 |
+
# if self.save_memory:
|
| 284 |
+
# self.model.low_vram_shift(is_diffusing=False)
|
| 285 |
+
# cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
|
| 286 |
+
# un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
|
| 287 |
+
# shape = (4, H // 8, W // 8)
|
| 288 |
+
# self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
|
| 289 |
+
# samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
|
| 290 |
+
# if self.save_memory:
|
| 291 |
+
# self.model.low_vram_shift(is_diffusing=False)
|
| 292 |
+
# x_samples = self.model.decode_first_stage(samples)
|
| 293 |
+
# x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 294 |
+
# updated_image_path = get_new_image_name(image_path, func_name="canny2image")
|
| 295 |
+
# real_image = Image.fromarray(x_samples[0]) # get default the index0 image
|
| 296 |
+
# real_image.save(updated_image_path)
|
| 297 |
+
# return updated_image_path
|
| 298 |
+
class image2line_new:
|
| 299 |
+
def __init__(self):
|
| 300 |
+
self.detector = MLSDdetector.from_pretrained('lllyasviel/ControlNet')
|
| 301 |
+
self.value_thresh = 0.1
|
| 302 |
+
self.dis_thresh = 0.1
|
| 303 |
+
self.resolution = 512
|
| 304 |
+
|
| 305 |
+
def inference(self, inputs):
|
| 306 |
+
print("===>Starting image2line Inference")
|
| 307 |
+
image = Image.open(inputs)
|
| 308 |
+
image = np.array(image)
|
| 309 |
+
image = HWC3(image)
|
| 310 |
+
mlsd = self.detector(resize_image(image, self.resolution), thr_v=self.value_thresh, thr_d=self.dis_thresh)
|
| 311 |
+
mlsd = np.array(mlsd)
|
| 312 |
+
mlsd = 255 - mlsd
|
| 313 |
+
mlsd = Image.fromarray(mlsd)
|
| 314 |
+
updated_image_path = get_new_image_name(inputs, func_name="line-of")
|
| 315 |
+
mlsd.save(updated_image_path)
|
| 316 |
return updated_image_path
|
| 317 |
|
| 318 |
+
class line2image_new:
|
| 319 |
+
def __init__(self, device):
|
| 320 |
+
print("Initialize the line2image model...")
|
| 321 |
+
self.controlnet = ControlNetModel.from_pretrained(
|
| 322 |
+
"fusing/stable-diffusion-v1-5-controlnet-mlsd"
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 326 |
+
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None
|
| 327 |
+
)
|
| 328 |
+
|
| 329 |
+
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
| 330 |
+
self.pipe.to(device)
|
| 331 |
+
self.image_resolution = 512
|
| 332 |
+
self.num_inference_steps = 20
|
| 333 |
+
self.seed = -1
|
| 334 |
+
self.unconditional_guidance_scale = 9.0
|
| 335 |
+
self.a_prompt = 'best quality, extremely detailed'
|
| 336 |
+
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 337 |
+
|
| 338 |
+
def inference(self, inputs):
|
| 339 |
+
print("===>Starting line2image Inference")
|
| 340 |
+
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
| 341 |
+
image = Image.open(image_path)
|
| 342 |
+
image = np.array(image)
|
| 343 |
+
image = 255 - image
|
| 344 |
+
prompt = instruct_text
|
| 345 |
+
img = resize_image(HWC3(image), self.image_resolution)
|
| 346 |
+
img = Image.fromarray(img)
|
| 347 |
+
|
| 348 |
+
self.seed = random.randint(0, 65535)
|
| 349 |
+
seed_everything(self.seed)
|
| 350 |
+
|
| 351 |
+
prompt = prompt + ', ' + self.a_prompt
|
| 352 |
+
image = self.pipe(prompt, img, num_inference_steps=self.num_inference_steps, eta=0.0, negative_prompt=self.n_prompt, guidance_scale=self.unconditional_guidance_scale).images[0]
|
| 353 |
+
updated_image_path = get_new_image_name(image_path, func_name="line2image")
|
| 354 |
+
image.save(updated_image_path)
|
| 355 |
+
return updated_image_path
|
| 356 |
+
|
| 357 |
+
|
| 358 |
class image2line:
|
| 359 |
def __init__(self):
|
| 360 |
print("Direct detect straight line...")
|