Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoProcessor, AutoModelForCausalLM | |
| import spaces | |
| from PIL import Image | |
| import subprocess | |
| subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
| model = AutoModelForCausalLM.from_pretrained('HuggingFaceM4/Florence-2-DocVQA', trust_remote_code=True).to("cuda").eval() | |
| processor = AutoProcessor.from_pretrained('HuggingFaceM4/Florence-2-DocVQA', trust_remote_code=True) | |
| TITLE = "# [Florence-2-DocVQA Demo](https://huggingface.co/HuggingFaceM4/Florence-2-DocVQA)" | |
| DESCRIPTION = "The demo for Florence-2 fine-tuned on DocVQA dataset. You can find the notebook [here](https://colab.research.google.com/drive/1hKDrJ5AH_o7I95PtZ9__VlCTNAo1Gjpf?usp=sharing). Read more about Florence-2 fine-tuning [here](finetune-florence2)." | |
| colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red', | |
| 'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue'] | |
| def run_example(task_prompt, image, text_input=None): | |
| if text_input is None: | |
| prompt = task_prompt | |
| else: | |
| prompt = task_prompt + text_input | |
| inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda") | |
| generated_ids = model.generate( | |
| input_ids=inputs["input_ids"], | |
| pixel_values=inputs["pixel_values"], | |
| max_new_tokens=1024, | |
| early_stopping=False, | |
| do_sample=False, | |
| num_beams=3, | |
| ) | |
| generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] | |
| parsed_answer = processor.post_process_generation( | |
| generated_text, | |
| task=task_prompt, | |
| image_size=(image.width, image.height) | |
| ) | |
| return parsed_answer | |
| def process_image(image, text_input=None): | |
| image = Image.fromarray(image) # Convert NumPy array to PIL Image | |
| task_prompt = '<DocVQA>' | |
| results = run_example(task_prompt, image, text_input)[task_prompt].replace("<pad>", "") | |
| return results | |
| css = """ | |
| #output { | |
| height: 500px; | |
| overflow: auto; | |
| border: 1px solid #ccc; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| gr.Markdown(TITLE) | |
| gr.Markdown(DESCRIPTION) | |
| with gr.Tab(label="Florence-2 Image Captioning"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_img = gr.Image(label="Input Picture") | |
| text_input = gr.Textbox(label="Text Input (optional)") | |
| submit_btn = gr.Button(value="Submit") | |
| with gr.Column(): | |
| output_text = gr.Textbox(label="Output Text") | |
| gr.Examples( | |
| examples=[ | |
| ["idefics2_architecture.png", 'How many tokens per image does it use?'], | |
| ["idefics2_architecture.png", "What type of encoder does the model use?"], | |
| ["idefics2_architecture.png", 'Up to which size can the images be?'], | |
| ["image.jpg", "What's the share of Industry Switchers Gained?"] | |
| ], | |
| inputs=[input_img, text_input], | |
| outputs=[output_text], | |
| fn=process_image, | |
| cache_examples=True, | |
| label='Try the examples below' | |
| ) | |
| submit_btn.click(process_image, [input_img, text_input], [output_text]) | |
| demo.launch(debug=True) |