Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -115,8 +115,9 @@ class Chatbot():
|
|
| 115 |
print('Calculating embeddings')
|
| 116 |
openai.api_key = os.getenv('OPENAI_API_KEY')
|
| 117 |
embedding_model = "text-embedding-ada-002"
|
| 118 |
-
#
|
| 119 |
-
embeddings =
|
|
|
|
| 120 |
return embeddings
|
| 121 |
|
| 122 |
def search_embeddings(self, embeddings, df, query, n=3, pprint=True):
|
|
@@ -126,6 +127,7 @@ class Chatbot():
|
|
| 126 |
query,
|
| 127 |
engine="text-embedding-ada-002"
|
| 128 |
)
|
|
|
|
| 129 |
# Step 2. Create a FAISS index and add the embeddings
|
| 130 |
d = embeddings.shape[1]
|
| 131 |
# Use the L2 distance metric
|
|
|
|
| 115 |
print('Calculating embeddings')
|
| 116 |
openai.api_key = os.getenv('OPENAI_API_KEY')
|
| 117 |
embedding_model = "text-embedding-ada-002"
|
| 118 |
+
# Get the embeddings for each text element in the dataframe
|
| 119 |
+
embeddings = df.text.apply([lambda x: get_embedding(x, engine=embedding_model)])
|
| 120 |
+
embeddings = np.array(embeddings, dtype=np.float32)
|
| 121 |
return embeddings
|
| 122 |
|
| 123 |
def search_embeddings(self, embeddings, df, query, n=3, pprint=True):
|
|
|
|
| 127 |
query,
|
| 128 |
engine="text-embedding-ada-002"
|
| 129 |
)
|
| 130 |
+
query_embedding = np.array(query_embedding, dtype=np.float32)
|
| 131 |
# Step 2. Create a FAISS index and add the embeddings
|
| 132 |
d = embeddings.shape[1]
|
| 133 |
# Use the L2 distance metric
|