Spaces:
Running
Running
| # Copyright 2024 The YourMT3 Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Please see the details in the LICENSE file. | |
| import numpy as np | |
| import torch | |
| import json | |
| import soundfile as sf | |
| from utils.datasets_train import get_cache_data_loader | |
| def get_filelist(track_id: int) -> dict: | |
| filelist = '../../data/yourmt3_indexes/slakh_train_file_list.json' | |
| with open(filelist, 'r') as f: | |
| fl = json.load(f) | |
| new_filelist = dict() | |
| for key, value in fl.items(): | |
| if int(key) == track_id: | |
| new_filelist[0] = value | |
| return new_filelist | |
| def get_ds(track_id: int, random_amp_range: list = [1., 1.], stem_aug_prob: float = 0.8): | |
| filelist = get_filelist(track_id) | |
| dl = get_cache_data_loader(filelist, | |
| 'train', | |
| 1, | |
| 1, | |
| random_amp_range=random_amp_range, | |
| stem_aug_prob=stem_aug_prob, | |
| shuffle=False) | |
| ds = dl.dataset | |
| return ds | |
| def gen_audio(track_id: int, n_segments: int = 30, random_amp_range: list = [1., 1.], stem_aug_prob: float = 0.8): | |
| ds = get_ds(track_id, random_amp_range, stem_aug_prob) | |
| audio = [] | |
| for i in range(n_segments): | |
| audio.append(ds.__getitem__(0)[0]) | |
| # audio.append(ds.__getitem__(i)[0]) | |
| audio = torch.concat(audio, dim=2).numpy()[0, 0, :] | |
| sf.write('audio.wav', audio, 16000, subtype='PCM_16') | |
| gen_audio(1, 20) | |