| import gradio as gr | |
| from transformers import pipeline | |
| import numpy as np | |
| transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en") | |
| def transcribe(audio): | |
| sr, y = audio | |
| y = y.astype(np.float32) | |
| y /= np.max(np.abs(y)) | |
| return transcriber({"sampling_rate": sr, "raw": y})["text"] | |
| demo = gr.Interface( | |
| transcribe, | |
| gr.Audio(sources=["microphone"]), | |
| "text", | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |