Spaces:
Running
Running
| import os | |
| import sys | |
| import gradio as gr | |
| os.makedirs("outputs", exist_ok=True) | |
| sys.path.insert(0, '.') | |
| import argparse | |
| import os.path as osp | |
| import mmcv | |
| import numpy as np | |
| import torch | |
| from mogen.models import build_architecture | |
| from mmcv.runner import load_checkpoint | |
| from mmcv.parallel import MMDataParallel | |
| from mogen.utils.plot_utils import ( | |
| recover_from_ric, | |
| plot_3d_motion, | |
| t2m_kinematic_chain | |
| ) | |
| from scipy.ndimage import gaussian_filter | |
| from IPython.display import Image | |
| def motion_temporal_filter(motion, sigma=1): | |
| motion = motion.reshape(motion.shape[0], -1) | |
| for i in range(motion.shape[1]): | |
| motion[:, i] = gaussian_filter(motion[:, i], sigma=sigma, mode="nearest") | |
| return motion.reshape(motion.shape[0], -1, 3) | |
| def plot_t2m(data, result_path, npy_path, caption): | |
| joint = recover_from_ric(torch.from_numpy(data).float(), 22).numpy() | |
| joint = motion_temporal_filter(joint, sigma=2.5) | |
| plot_3d_motion(result_path, t2m_kinematic_chain, joint, title=caption, fps=20) | |
| if npy_path is not None: | |
| np.save(npy_path, joint) | |
| def create_remodiffuse(): | |
| config_path = "configs/remodiffuse/remodiffuse_t2m.py" | |
| ckpt_path = "logs/remodiffuse/remodiffuse_t2m/latest.pth" | |
| cfg = mmcv.Config.fromfile(config_path) | |
| model = build_architecture(cfg.model) | |
| load_checkpoint(model, ckpt_path, map_location='cpu') | |
| model.cpu() | |
| model.eval() | |
| return model | |
| def create_motiondiffuse(): | |
| config_path = "configs/motiondiffuse/motiondiffuse_t2m.py" | |
| ckpt_path = "logs/motiondiffuse/motiondiffuse_t2m/latest.pth" | |
| cfg = mmcv.Config.fromfile(config_path) | |
| model = build_architecture(cfg.model) | |
| load_checkpoint(model, ckpt_path, map_location='cpu') | |
| model.cpu() | |
| model.eval() | |
| return model | |
| def create_mdm(): | |
| config_path = "configs/mdm/mdm_t2m_official.py" | |
| ckpt_path = "logs/mdm/mdm_t2m/latest.pth" | |
| cfg = mmcv.Config.fromfile(config_path) | |
| model = build_architecture(cfg.model) | |
| load_checkpoint(model, ckpt_path, map_location='cpu') | |
| model.cpu() | |
| model.eval() | |
| return model | |
| model_remodiffuse = create_remodiffuse() | |
| # model_motiondiffuse = create_motiondiffuse() | |
| # model_mdm = create_mdm() | |
| mean_path = "data/datasets/human_ml3d/mean.npy" | |
| std_path = "data/datasets/human_ml3d/std.npy" | |
| mean = np.load(mean_path) | |
| std = np.load(std_path) | |
| def show_generation_result(model, text, motion_length, result_path): | |
| device = 'cpu' | |
| motion = torch.zeros(1, motion_length, 263).to(device) | |
| motion_mask = torch.ones(1, motion_length).to(device) | |
| motion_length = torch.Tensor([motion_length]).long().to(device) | |
| model = model.to(device) | |
| input = { | |
| 'motion': motion, | |
| 'motion_mask': motion_mask, | |
| 'motion_length': motion_length, | |
| 'motion_metas': [{'text': text}], | |
| } | |
| all_pred_motion = [] | |
| with torch.no_grad(): | |
| input['inference_kwargs'] = {} | |
| output_list = [] | |
| output = model(**input)[0]['pred_motion'] | |
| pred_motion = output.cpu().detach().numpy() | |
| pred_motion = pred_motion * std + mean | |
| plot_t2m(pred_motion, result_path, None, text) | |
| def generate(prompt, length): | |
| if not os.path.exists("outputs"): | |
| os.mkdir("outputs") | |
| result_path = "outputs/" + str(hash(prompt)) + ".mp4" | |
| show_generation_result(model_remodiffuse, prompt, length, result_path) | |
| return result_path | |
| demo = gr.Interface( | |
| fn=generate, | |
| inputs=["text", gr.Slider(20, 196, value=60)], | |
| examples=[ | |
| ["the man throws a punch with each hand.", 58], | |
| ["a person spins quickly and takes off running.", 29], | |
| ["a person quickly waves with their right hand", 46], | |
| ["a person performing a slight bow", 89], | |
| ], | |
| outputs="video", | |
| title="ReMoDiffuse: Retrieval-Augmented Motion Diffusion Model", | |
| description="This is an interactive demo for ReMoDiffuse. For more information, feel free to visit our project page(https://mingyuan-zhang.github.io/projects/ReMoDiffuse.html).") | |
| demo.queue() | |
| demo.launch() |