Spaces:
Running
Running
File size: 15,108 Bytes
6c982a7 4cc60c6 6c982a7 4cc60c6 6c982a7 4cc60c6 6c982a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
from qdrant_client import QdrantClient
from qdrant_client.models import (
Distance, VectorParams, PointStruct,
SearchRequest, SearchParams, HnswConfigDiff,
OptimizersConfigDiff, ScalarQuantization,
ScalarQuantizationConfig, ScalarType,
QuantizationSearchParams
)
from typing import List, Dict, Any, Optional
import numpy as np
import uuid
import os
class QdrantVectorService:
"""
Qdrant Cloud Vector Database Service với cấu hình tối ưu
- HNSW algorithm với parameters mạnh mẽ nhất
- Scalar Quantization để tối ưu memory và speed
- Hỗ trợ hybrid search (text + image)
"""
def __init__(
self,
url: Optional[str] = None,
api_key: Optional[str] = None,
collection_name: str = "event_social_media",
vector_size: int = 1024, # Jina CLIP v2 dimension
):
"""
Initialize Qdrant Cloud client
Args:
url: Qdrant Cloud URL (từ env hoặc truyền vào)
api_key: Qdrant API key (từ env hoặc truyền vào)
collection_name: Tên collection
vector_size: Dimension của vectors (1024 cho Jina CLIP v2)
"""
# Lấy credentials từ env nếu không truyền vào
self.url = url or os.getenv("QDRANT_URL")
self.api_key = api_key or os.getenv("QDRANT_API_KEY")
if not self.url or not self.api_key:
raise ValueError("Cần cung cấp QDRANT_URL và QDRANT_API_KEY (qua env hoặc params)")
print(f"Connecting to Qdrant Cloud...")
# Initialize Qdrant Cloud client
self.client = QdrantClient(
url=self.url,
api_key=self.api_key,
)
self.collection_name = collection_name
self.vector_size = vector_size
# Create collection nếu chưa tồn tại
self._ensure_collection()
print(f"✓ Connected to Qdrant collection: {collection_name}")
def _ensure_collection(self):
"""
Tạo collection với HNSW config tối ưu nhất
"""
# Check nếu collection đã tồn tại
collections = self.client.get_collections().collections
collection_exists = any(c.name == self.collection_name for c in collections)
if not collection_exists:
print(f"Creating collection {self.collection_name} with optimal HNSW config...")
self.client.create_collection(
collection_name=self.collection_name,
vectors_config=VectorParams(
size=self.vector_size,
distance=Distance.COSINE, # Cosine similarity cho embeddings
hnsw_config=HnswConfigDiff(
m=64, # Số edges per node - cao nhất cho accuracy
ef_construct=512, # Search range khi build index - cao cho quality
full_scan_threshold=10000, # Threshold để switch sang full scan
max_indexing_threads=0, # Auto-detect số threads
on_disk=False, # Keep trong RAM cho speed (nếu đủ memory)
)
),
optimizers_config=OptimizersConfigDiff(
deleted_threshold=0.2,
vacuum_min_vector_number=1000,
default_segment_number=2,
max_segment_size=200000,
memmap_threshold=50000,
indexing_threshold=10000,
flush_interval_sec=5,
max_optimization_threads=0, # Auto-detect
),
# Sử dụng Scalar Quantization để tối ưu memory và speed
quantization_config=ScalarQuantization(
scalar=ScalarQuantizationConfig(
type=ScalarType.INT8,
quantile=0.99,
always_ram=True, # Keep quantized vectors trong RAM
)
)
)
print("✓ Collection created with optimal configuration")
else:
print("✓ Collection already exists")
def _convert_to_valid_id(self, doc_id: str) -> str:
"""
Convert bất kỳ string ID nào thành UUID hợp lệ cho Qdrant
Args:
doc_id: Original ID (có thể là MongoDB ObjectId, string, etc.)
Returns:
UUID string hợp lệ
"""
if not doc_id:
return str(uuid.uuid4())
# Nếu đã là UUID hợp lệ, giữ nguyên
try:
uuid.UUID(doc_id)
return doc_id
except ValueError:
pass
# Convert string sang UUID deterministic (cùng input = cùng UUID)
# Sử dụng UUID v5 với namespace DNS
return str(uuid.uuid5(uuid.NAMESPACE_DNS, doc_id))
def index_data(
self,
doc_id: str,
embedding: np.ndarray,
metadata: Dict[str, Any]
) -> Dict[str, str]:
"""
Index data vào Qdrant
Args:
doc_id: ID của document (MongoDB ObjectId, string, etc.)
embedding: Vector embedding từ Jina CLIP
metadata: Metadata (text, image_url, event_info, etc.)
Returns:
Dict với original_id và qdrant_id
"""
# Convert ID thành UUID hợp lệ
qdrant_id = self._convert_to_valid_id(doc_id)
# Lưu original ID vào metadata
metadata['original_id'] = doc_id
# Ensure embedding là 1D array
if len(embedding.shape) > 1:
embedding = embedding.flatten()
# Create point
point = PointStruct(
id=qdrant_id,
vector=embedding.tolist(),
payload=metadata
)
# Upsert vào collection
self.client.upsert(
collection_name=self.collection_name,
points=[point]
)
return {
"original_id": doc_id,
"qdrant_id": qdrant_id
}
def batch_index(
self,
doc_ids: List[str],
embeddings: np.ndarray,
metadata_list: List[Dict[str, Any]]
) -> List[Dict[str, str]]:
"""
Batch index nhiều documents cùng lúc
Args:
doc_ids: List of document IDs (MongoDB ObjectId, string, etc.)
embeddings: Numpy array of embeddings (n_samples, embedding_dim)
metadata_list: List of metadata dicts
Returns:
List of dicts với original_id và qdrant_id
"""
points = []
id_mappings = []
for i, (doc_id, embedding, metadata) in enumerate(zip(doc_ids, embeddings, metadata_list)):
# Convert to valid UUID
qdrant_id = self._convert_to_valid_id(doc_id)
# Lưu original ID vào metadata
metadata['original_id'] = doc_id
# Ensure embedding là 1D
if len(embedding.shape) > 1:
embedding = embedding.flatten()
points.append(PointStruct(
id=qdrant_id,
vector=embedding.tolist(),
payload=metadata
))
id_mappings.append({
"original_id": doc_id,
"qdrant_id": qdrant_id
})
# Batch upsert
self.client.upsert(
collection_name=self.collection_name,
points=points,
wait=True # Wait for indexing to complete
)
return id_mappings
def search(
self,
query_embedding: np.ndarray,
limit: int = 10,
score_threshold: Optional[float] = None,
filter_conditions: Optional[Dict] = None,
ef: int = 256 # Search quality parameter - cao hơn = accurate hơn
) -> List[Dict[str, Any]]:
"""
Search similar vectors trong Qdrant
Args:
query_embedding: Query embedding từ Jina CLIP
limit: Số lượng results trả về
score_threshold: Minimum similarity score (0-1)
filter_conditions: Qdrant filter conditions
ef: HNSW search parameter (128-512, cao hơn = accurate hơn)
Returns:
List of search results với id, score, và metadata
"""
# Ensure query embedding là 1D
if len(query_embedding.shape) > 1:
query_embedding = query_embedding.flatten()
# Search với HNSW parameters tối ưu (qdrant-client v1.16.0+)
search_result = self.client.query_points(
collection_name=self.collection_name,
query=query_embedding.tolist(),
limit=limit,
score_threshold=score_threshold,
query_filter=filter_conditions,
search_params=SearchParams(
hnsw_ef=ef, # Higher ef = more accurate search
exact=False, # Use HNSW (not exact search)
quantization=QuantizationSearchParams(
ignore=False, # Use quantization
rescore=True, # Rescore với original vectors
oversampling=2.0 # Oversample factor
)
),
with_payload=True,
).points
# Format results - trả về original_id thay vì UUID
results = []
for hit in search_result:
# Lấy original_id từ metadata (MongoDB ObjectId)
original_id = hit.payload.get('original_id', hit.id)
results.append({
"id": original_id, # Trả về MongoDB ObjectId
"qdrant_id": hit.id, # UUID trong Qdrant
"confidence": float(hit.score), # Cosine similarity score
"metadata": hit.payload
})
return results
def hybrid_search(
self,
text_embedding: Optional[np.ndarray] = None,
image_embedding: Optional[np.ndarray] = None,
text_weight: float = 0.5,
image_weight: float = 0.5,
limit: int = 10,
score_threshold: Optional[float] = None,
ef: int = 256
) -> List[Dict[str, Any]]:
"""
Hybrid search với cả text và image embeddings
Args:
text_embedding: Text query embedding
image_embedding: Image query embedding
text_weight: Weight cho text search (0-1)
image_weight: Weight cho image search (0-1)
limit: Số results
score_threshold: Minimum score
ef: HNSW search parameter
Returns:
Combined search results
"""
# Combine embeddings với weights
combined_embedding = np.zeros(self.vector_size)
if text_embedding is not None:
if len(text_embedding.shape) > 1:
text_embedding = text_embedding.flatten()
combined_embedding += text_weight * text_embedding
if image_embedding is not None:
if len(image_embedding.shape) > 1:
image_embedding = image_embedding.flatten()
combined_embedding += image_weight * image_embedding
# Normalize combined embedding
norm = np.linalg.norm(combined_embedding)
if norm > 0:
combined_embedding = combined_embedding / norm
# Search với combined embedding
return self.search(
query_embedding=combined_embedding,
limit=limit,
score_threshold=score_threshold,
ef=ef
)
def delete_by_id(self, doc_id: str) -> bool:
"""
Delete document by ID (hỗ trợ cả MongoDB ObjectId và UUID)
Args:
doc_id: Document ID to delete (MongoDB ObjectId hoặc UUID)
Returns:
Success status
"""
# Convert to UUID nếu là MongoDB ObjectId
qdrant_id = self._convert_to_valid_id(doc_id)
self.client.delete(
collection_name=self.collection_name,
points_selector=[qdrant_id]
)
return True
def get_by_id(self, doc_id: str) -> Optional[Dict[str, Any]]:
"""
Get document by ID (hỗ trợ cả MongoDB ObjectId và UUID)
Args:
doc_id: Document ID (MongoDB ObjectId hoặc UUID)
Returns:
Document data hoặc None nếu không tìm thấy
"""
# Convert to UUID nếu là MongoDB ObjectId
qdrant_id = self._convert_to_valid_id(doc_id)
try:
result = self.client.retrieve(
collection_name=self.collection_name,
ids=[qdrant_id],
with_payload=True,
with_vectors=False
)
if result:
point = result[0]
original_id = point.payload.get('original_id', point.id)
return {
"id": original_id, # MongoDB ObjectId
"qdrant_id": point.id, # UUID trong Qdrant
"metadata": point.payload
}
return None
except Exception as e:
print(f"Error retrieving document: {e}")
return None
def search_by_metadata(
self,
filter_conditions: Dict,
limit: int = 100
) -> List[Dict[str, Any]]:
"""
Search documents by metadata conditions (không cần embedding)
Args:
filter_conditions: Qdrant filter conditions
limit: Maximum số results
Returns:
List of matching documents
"""
try:
result = self.client.scroll(
collection_name=self.collection_name,
scroll_filter=filter_conditions,
limit=limit,
with_payload=True,
with_vectors=False
)
documents = []
for point in result[0]: # result is tuple (points, next_page_offset)
original_id = point.payload.get('original_id', point.id)
documents.append({
"id": original_id, # MongoDB ObjectId
"qdrant_id": point.id, # UUID trong Qdrant
"metadata": point.payload
})
return documents
except Exception as e:
print(f"Error searching by metadata: {e}")
return []
def get_collection_info(self) -> Dict[str, Any]:
"""
Lấy thông tin collection
Returns:
Collection info
"""
info = self.client.get_collection(collection_name=self.collection_name)
return {
"vectors_count": info.vectors_count,
"points_count": info.points_count,
"status": info.status,
"config": {
"distance": info.config.params.vectors.distance,
"size": info.config.params.vectors.size,
}
}
|