File size: 15,108 Bytes
6c982a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cc60c6
 
6c982a7
4cc60c6
6c982a7
 
 
 
 
 
 
 
 
 
 
 
 
4cc60c6
6c982a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
from qdrant_client import QdrantClient
from qdrant_client.models import (
    Distance, VectorParams, PointStruct,
    SearchRequest, SearchParams, HnswConfigDiff,
    OptimizersConfigDiff, ScalarQuantization,
    ScalarQuantizationConfig, ScalarType,
    QuantizationSearchParams
)
from typing import List, Dict, Any, Optional
import numpy as np
import uuid
import os


class QdrantVectorService:
    """
    Qdrant Cloud Vector Database Service với cấu hình tối ưu
    - HNSW algorithm với parameters mạnh mẽ nhất
    - Scalar Quantization để tối ưu memory và speed
    - Hỗ trợ hybrid search (text + image)
    """

    def __init__(
        self,
        url: Optional[str] = None,
        api_key: Optional[str] = None,
        collection_name: str = "event_social_media",
        vector_size: int = 1024,  # Jina CLIP v2 dimension
    ):
        """
        Initialize Qdrant Cloud client

        Args:
            url: Qdrant Cloud URL (từ env hoặc truyền vào)
            api_key: Qdrant API key (từ env hoặc truyền vào)
            collection_name: Tên collection
            vector_size: Dimension của vectors (1024 cho Jina CLIP v2)
        """
        # Lấy credentials từ env nếu không truyền vào
        self.url = url or os.getenv("QDRANT_URL")
        self.api_key = api_key or os.getenv("QDRANT_API_KEY")

        if not self.url or not self.api_key:
            raise ValueError("Cần cung cấp QDRANT_URL và QDRANT_API_KEY (qua env hoặc params)")

        print(f"Connecting to Qdrant Cloud...")

        # Initialize Qdrant Cloud client
        self.client = QdrantClient(
            url=self.url,
            api_key=self.api_key,
        )

        self.collection_name = collection_name
        self.vector_size = vector_size

        # Create collection nếu chưa tồn tại
        self._ensure_collection()

        print(f"✓ Connected to Qdrant collection: {collection_name}")

    def _ensure_collection(self):
        """
        Tạo collection với HNSW config tối ưu nhất
        """
        # Check nếu collection đã tồn tại
        collections = self.client.get_collections().collections
        collection_exists = any(c.name == self.collection_name for c in collections)

        if not collection_exists:
            print(f"Creating collection {self.collection_name} with optimal HNSW config...")

            self.client.create_collection(
                collection_name=self.collection_name,
                vectors_config=VectorParams(
                    size=self.vector_size,
                    distance=Distance.COSINE,  # Cosine similarity cho embeddings
                    hnsw_config=HnswConfigDiff(
                        m=64,  # Số edges per node - cao nhất cho accuracy
                        ef_construct=512,  # Search range khi build index - cao cho quality
                        full_scan_threshold=10000,  # Threshold để switch sang full scan
                        max_indexing_threads=0,  # Auto-detect số threads
                        on_disk=False,  # Keep trong RAM cho speed (nếu đủ memory)
                    )
                ),
                optimizers_config=OptimizersConfigDiff(
                    deleted_threshold=0.2,
                    vacuum_min_vector_number=1000,
                    default_segment_number=2,
                    max_segment_size=200000,
                    memmap_threshold=50000,
                    indexing_threshold=10000,
                    flush_interval_sec=5,
                    max_optimization_threads=0,  # Auto-detect
                ),
                # Sử dụng Scalar Quantization để tối ưu memory và speed
                quantization_config=ScalarQuantization(
                    scalar=ScalarQuantizationConfig(
                        type=ScalarType.INT8,
                        quantile=0.99,
                        always_ram=True,  # Keep quantized vectors trong RAM
                    )
                )
            )
            print("✓ Collection created with optimal configuration")
        else:
            print("✓ Collection already exists")

    def _convert_to_valid_id(self, doc_id: str) -> str:
        """
        Convert bất kỳ string ID nào thành UUID hợp lệ cho Qdrant

        Args:
            doc_id: Original ID (có thể là MongoDB ObjectId, string, etc.)

        Returns:
            UUID string hợp lệ
        """
        if not doc_id:
            return str(uuid.uuid4())

        # Nếu đã là UUID hợp lệ, giữ nguyên
        try:
            uuid.UUID(doc_id)
            return doc_id
        except ValueError:
            pass

        # Convert string sang UUID deterministic (cùng input = cùng UUID)
        # Sử dụng UUID v5 với namespace DNS
        return str(uuid.uuid5(uuid.NAMESPACE_DNS, doc_id))

    def index_data(
        self,
        doc_id: str,
        embedding: np.ndarray,
        metadata: Dict[str, Any]
    ) -> Dict[str, str]:
        """
        Index data vào Qdrant

        Args:
            doc_id: ID của document (MongoDB ObjectId, string, etc.)
            embedding: Vector embedding từ Jina CLIP
            metadata: Metadata (text, image_url, event_info, etc.)

        Returns:
            Dict với original_id và qdrant_id
        """
        # Convert ID thành UUID hợp lệ
        qdrant_id = self._convert_to_valid_id(doc_id)

        # Lưu original ID vào metadata
        metadata['original_id'] = doc_id

        # Ensure embedding là 1D array
        if len(embedding.shape) > 1:
            embedding = embedding.flatten()

        # Create point
        point = PointStruct(
            id=qdrant_id,
            vector=embedding.tolist(),
            payload=metadata
        )

        # Upsert vào collection
        self.client.upsert(
            collection_name=self.collection_name,
            points=[point]
        )

        return {
            "original_id": doc_id,
            "qdrant_id": qdrant_id
        }

    def batch_index(
        self,
        doc_ids: List[str],
        embeddings: np.ndarray,
        metadata_list: List[Dict[str, Any]]
    ) -> List[Dict[str, str]]:
        """
        Batch index nhiều documents cùng lúc

        Args:
            doc_ids: List of document IDs (MongoDB ObjectId, string, etc.)
            embeddings: Numpy array of embeddings (n_samples, embedding_dim)
            metadata_list: List of metadata dicts

        Returns:
            List of dicts với original_id và qdrant_id
        """
        points = []
        id_mappings = []

        for i, (doc_id, embedding, metadata) in enumerate(zip(doc_ids, embeddings, metadata_list)):
            # Convert to valid UUID
            qdrant_id = self._convert_to_valid_id(doc_id)

            # Lưu original ID vào metadata
            metadata['original_id'] = doc_id

            # Ensure embedding là 1D
            if len(embedding.shape) > 1:
                embedding = embedding.flatten()

            points.append(PointStruct(
                id=qdrant_id,
                vector=embedding.tolist(),
                payload=metadata
            ))

            id_mappings.append({
                "original_id": doc_id,
                "qdrant_id": qdrant_id
            })

        # Batch upsert
        self.client.upsert(
            collection_name=self.collection_name,
            points=points,
            wait=True  # Wait for indexing to complete
        )

        return id_mappings

    def search(
        self,
        query_embedding: np.ndarray,
        limit: int = 10,
        score_threshold: Optional[float] = None,
        filter_conditions: Optional[Dict] = None,
        ef: int = 256  # Search quality parameter - cao hơn = accurate hơn
    ) -> List[Dict[str, Any]]:
        """
        Search similar vectors trong Qdrant

        Args:
            query_embedding: Query embedding từ Jina CLIP
            limit: Số lượng results trả về
            score_threshold: Minimum similarity score (0-1)
            filter_conditions: Qdrant filter conditions
            ef: HNSW search parameter (128-512, cao hơn = accurate hơn)

        Returns:
            List of search results với id, score, và metadata
        """
        # Ensure query embedding là 1D
        if len(query_embedding.shape) > 1:
            query_embedding = query_embedding.flatten()

        # Search với HNSW parameters tối ưu (qdrant-client v1.16.0+)
        search_result = self.client.query_points(
            collection_name=self.collection_name,
            query=query_embedding.tolist(),
            limit=limit,
            score_threshold=score_threshold,
            query_filter=filter_conditions,
            search_params=SearchParams(
                hnsw_ef=ef,  # Higher ef = more accurate search
                exact=False,  # Use HNSW (not exact search)
                quantization=QuantizationSearchParams(
                    ignore=False,  # Use quantization
                    rescore=True,  # Rescore với original vectors
                    oversampling=2.0  # Oversample factor
                )
            ),
            with_payload=True,
        ).points

        # Format results - trả về original_id thay vì UUID
        results = []
        for hit in search_result:
            # Lấy original_id từ metadata (MongoDB ObjectId)
            original_id = hit.payload.get('original_id', hit.id)
            
            results.append({
                "id": original_id,  # Trả về MongoDB ObjectId
                "qdrant_id": hit.id,  # UUID trong Qdrant
                "confidence": float(hit.score),  # Cosine similarity score
                "metadata": hit.payload
            })

        return results

    def hybrid_search(
        self,
        text_embedding: Optional[np.ndarray] = None,
        image_embedding: Optional[np.ndarray] = None,
        text_weight: float = 0.5,
        image_weight: float = 0.5,
        limit: int = 10,
        score_threshold: Optional[float] = None,
        ef: int = 256
    ) -> List[Dict[str, Any]]:
        """
        Hybrid search với cả text và image embeddings

        Args:
            text_embedding: Text query embedding
            image_embedding: Image query embedding
            text_weight: Weight cho text search (0-1)
            image_weight: Weight cho image search (0-1)
            limit: Số results
            score_threshold: Minimum score
            ef: HNSW search parameter

        Returns:
            Combined search results
        """
        # Combine embeddings với weights
        combined_embedding = np.zeros(self.vector_size)

        if text_embedding is not None:
            if len(text_embedding.shape) > 1:
                text_embedding = text_embedding.flatten()
            combined_embedding += text_weight * text_embedding

        if image_embedding is not None:
            if len(image_embedding.shape) > 1:
                image_embedding = image_embedding.flatten()
            combined_embedding += image_weight * image_embedding

        # Normalize combined embedding
        norm = np.linalg.norm(combined_embedding)
        if norm > 0:
            combined_embedding = combined_embedding / norm

        # Search với combined embedding
        return self.search(
            query_embedding=combined_embedding,
            limit=limit,
            score_threshold=score_threshold,
            ef=ef
        )

    def delete_by_id(self, doc_id: str) -> bool:
        """
        Delete document by ID (hỗ trợ cả MongoDB ObjectId và UUID)

        Args:
            doc_id: Document ID to delete (MongoDB ObjectId hoặc UUID)

        Returns:
            Success status
        """
        # Convert to UUID nếu là MongoDB ObjectId
        qdrant_id = self._convert_to_valid_id(doc_id)
        
        self.client.delete(
            collection_name=self.collection_name,
            points_selector=[qdrant_id]
        )
        return True

    def get_by_id(self, doc_id: str) -> Optional[Dict[str, Any]]:
        """
        Get document by ID (hỗ trợ cả MongoDB ObjectId và UUID)

        Args:
            doc_id: Document ID (MongoDB ObjectId hoặc UUID)

        Returns:
            Document data hoặc None nếu không tìm thấy
        """
        # Convert to UUID nếu là MongoDB ObjectId
        qdrant_id = self._convert_to_valid_id(doc_id)
        
        try:
            result = self.client.retrieve(
                collection_name=self.collection_name,
                ids=[qdrant_id],
                with_payload=True,
                with_vectors=False
            )
            
            if result:
                point = result[0]
                original_id = point.payload.get('original_id', point.id)
                return {
                    "id": original_id,  # MongoDB ObjectId
                    "qdrant_id": point.id,  # UUID trong Qdrant
                    "metadata": point.payload
                }
            return None
        except Exception as e:
            print(f"Error retrieving document: {e}")
            return None

    def search_by_metadata(
        self,
        filter_conditions: Dict,
        limit: int = 100
    ) -> List[Dict[str, Any]]:
        """
        Search documents by metadata conditions (không cần embedding)

        Args:
            filter_conditions: Qdrant filter conditions
            limit: Maximum số results

        Returns:
            List of matching documents
        """
        try:
            result = self.client.scroll(
                collection_name=self.collection_name,
                scroll_filter=filter_conditions,
                limit=limit,
                with_payload=True,
                with_vectors=False
            )
            
            documents = []
            for point in result[0]:  # result is tuple (points, next_page_offset)
                original_id = point.payload.get('original_id', point.id)
                documents.append({
                    "id": original_id,  # MongoDB ObjectId
                    "qdrant_id": point.id,  # UUID trong Qdrant
                    "metadata": point.payload
                })
            
            return documents
        except Exception as e:
            print(f"Error searching by metadata: {e}")
            return []

    def get_collection_info(self) -> Dict[str, Any]:
        """
        Lấy thông tin collection

        Returns:
            Collection info
        """
        info = self.client.get_collection(collection_name=self.collection_name)
        return {
            "vectors_count": info.vectors_count,
            "points_count": info.points_count,
            "status": info.status,
            "config": {
                "distance": info.config.params.vectors.distance,
                "size": info.config.params.vectors.size,
            }
        }