Spaces:
Running
Running
File size: 11,549 Bytes
75033ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
"""
Chat endpoint với Multi-turn Conversation + Function Calling
"""
from fastapi import HTTPException
from datetime import datetime
from huggingface_hub import InferenceClient
from typing import Dict, List
import json
async def chat_endpoint(
request, # ChatRequest
conversation_service,
tools_service,
advanced_rag,
embedding_service,
qdrant_service,
chat_history_collection,
hf_token
):
"""
Multi-turn conversational chatbot với RAG + Function Calling
Flow:
1. Session management - create hoặc load existing session
2. RAG search - retrieve context nếu enabled
3. Build messages với conversation history + tools prompt
4. LLM generation - có thể trigger tool calls
5. Execute tools nếu cần
6. Final LLM response với tool results
7. Save to conversation history
"""
try:
# ===== 1. SESSION MANAGEMENT =====
session_id = request.session_id
if not session_id:
# Create new session (server-side)
session_id = conversation_service.create_session(
metadata={"user_agent": "api", "created_via": "chat_endpoint"},
user_id=request.user_id # NEW: Pass user_id from request
)
print(f"Created new session: {session_id} for user: {request.user_id or 'anonymous'}")
else:
# Validate existing session
if not conversation_service.session_exists(session_id):
raise HTTPException(
status_code=404,
detail=f"Session {session_id} not found. It may have expired."
)
# Load conversation history
conversation_history = conversation_service.get_conversation_history(session_id)
# ===== 2. RAG SEARCH =====
context_used = []
rag_stats = None
context_text = ""
if request.use_rag:
if request.use_advanced_rag:
# Use Advanced RAG Pipeline
hf_client = None
if request.hf_token or hf_token:
hf_client = InferenceClient(token=request.hf_token or hf_token)
documents, stats = advanced_rag.hybrid_rag_pipeline(
query=request.message,
top_k=request.top_k,
score_threshold=request.score_threshold,
use_reranking=request.use_reranking,
use_compression=request.use_compression,
use_query_expansion=request.use_query_expansion,
max_context_tokens=500,
hf_client=hf_client
)
# Convert to dict format
context_used = [
{
"id": doc.id,
"confidence": doc.confidence,
"metadata": doc.metadata
}
for doc in documents
]
rag_stats = stats
# Format context
context_text = advanced_rag.format_context_for_llm(documents)
else:
# Basic RAG
query_embedding = embedding_service.encode_text(request.message)
results = qdrant_service.search(
query_embedding=query_embedding,
limit=request.top_k,
score_threshold=request.score_threshold
)
context_used = results
context_text = "\n\nRelevant Context:\n"
for i, doc in enumerate(context_used, 1):
doc_text = doc["metadata"].get("text", "")
if not doc_text:
doc_text = " ".join(doc["metadata"].get("texts", []))
confidence = doc["confidence"]
context_text += f"\n[{i}] (Confidence: {confidence:.2f})\n{doc_text}\n"
# ===== 3. BUILD MESSAGES với TOOLS PROMPT =====
messages = []
# System message với RAG context + Tools instruction
if request.use_rag and context_used:
if request.use_advanced_rag:
base_prompt = advanced_rag.build_rag_prompt(
query="", # Query sẽ đi trong user message
context=context_text,
system_message=request.system_message
)
else:
base_prompt = f"""{request.system_message}
{context_text}
HƯỚNG DẪN:
- Sử dụng thông tin từ context trên để trả lời câu hỏi.
- Trả lời tự nhiên, thân thiện, không copy nguyên văn.
- Nếu tìm thấy sự kiện, hãy tóm tắt các thông tin quan trọng nhất.
"""
else:
base_prompt = request.system_message
# Add tools instruction nếu enabled
if request.enable_tools:
tools_prompt = tools_service.get_tools_prompt()
system_message_with_tools = f"{base_prompt}\n\n{tools_prompt}"
else:
system_message_with_tools = base_prompt
# Bắt đầu messages với system
messages.append({"role": "system", "content": system_message_with_tools})
# Add conversation history (past turns)
messages.extend(conversation_history)
# Add current user message
messages.append({"role": "user", "content": request.message})
# ===== 4. LLM GENERATION =====
token = request.hf_token or hf_token
tool_calls_made = []
if not token:
response = f"""[LLM Response Placeholder]
Context retrieved: {len(context_used)} documents
User question: {request.message}
Session: {session_id}
To enable actual LLM generation:
1. Set HUGGINGFACE_TOKEN environment variable, OR
2. Pass hf_token in request body
"""
else:
try:
client = InferenceClient(
token=token,
model="openai/gpt-oss-20b" # Hoặc model khác
)
# First LLM call
first_response = ""
try:
for msg in client.chat_completion(
messages,
max_tokens=request.max_tokens,
stream=True,
temperature=request.temperature,
top_p=request.top_p,
):
choices = msg.choices
if len(choices) and choices[0].delta.content:
first_response += choices[0].delta.content
except Exception as e:
# HF API throws error when LLM returns JSON (tool call)
# Extract the "failed_generation" from error
error_str = str(e)
if "tool_use_failed" in error_str and "failed_generation" in error_str:
# Parse error dict to get the actual JSON response
import ast
try:
error_dict = ast.literal_eval(error_str)
first_response = error_dict.get("failed_generation", "")
except:
# Fallback: extract JSON from string
import re
match = re.search(r"'failed_generation': '({.*?})'", error_str)
if match:
first_response = match.group(1)
else:
raise e
else:
raise e
# ===== 5. PARSE & EXECUTE TOOLS =====
if request.enable_tools:
tool_result = await tools_service.parse_and_execute(first_response)
if tool_result:
# Tool was called!
tool_calls_made.append(tool_result)
# Add tool result to messages
messages.append({"role": "assistant", "content": first_response})
messages.append({
"role": "user",
"content": f"TOOL RESULT:\n{json.dumps(tool_result['result'], ensure_ascii=False, indent=2)}\n\nHãy dùng thông tin này để trả lời câu hỏi của user."
})
# Second LLM call với tool results
final_response = ""
for msg in client.chat_completion(
messages,
max_tokens=request.max_tokens,
stream=True,
temperature=request.temperature,
top_p=request.top_p,
):
choices = msg.choices
if len(choices) and choices[0].delta.content:
final_response += choices[0].delta.content
response = final_response
else:
# No tool call, use first response
response = first_response
else:
response = first_response
except Exception as e:
response = f"Error generating response with LLM: {str(e)}\n\nContext was retrieved successfully, but LLM generation failed."
# ===== 6. SAVE TO CONVERSATION HISTORY =====
conversation_service.add_message(
session_id,
"user",
request.message
)
conversation_service.add_message(
session_id,
"assistant",
response,
metadata={
"rag_stats": rag_stats,
"tool_calls": tool_calls_made,
"context_count": len(context_used)
}
)
# Also save to legacy chat_history collection
chat_data = {
"session_id": session_id,
"user_message": request.message,
"assistant_response": response,
"context_used": context_used,
"tool_calls": tool_calls_made,
"timestamp": datetime.utcnow()
}
chat_history_collection.insert_one(chat_data)
# ===== 7. RETURN RESPONSE =====
return {
"response": response,
"context_used": context_used,
"timestamp": datetime.utcnow().isoformat(),
"rag_stats": rag_stats,
"session_id": session_id,
"tool_calls": tool_calls_made if tool_calls_made else None
}
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
|