File size: 11,549 Bytes
75033ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
"""

Chat endpoint với Multi-turn Conversation + Function Calling

"""
from fastapi import HTTPException
from datetime import datetime
from huggingface_hub import InferenceClient
from typing import Dict, List
import json


async def chat_endpoint(

    request,  # ChatRequest

    conversation_service,

    tools_service,

    advanced_rag,

    embedding_service,

    qdrant_service,

    chat_history_collection,

    hf_token

):
    """

    Multi-turn conversational chatbot với RAG + Function Calling

    

    Flow:

    1. Session management - create hoặc load existing session

    2. RAG search - retrieve context nếu enabled

    3. Build messages với conversation history +  tools prompt

    4. LLM generation - có thể trigger tool calls

    5. Execute tools nếu cần

    6. Final LLM response với tool results

    7. Save to conversation history

    """
    try:
        # ===== 1. SESSION MANAGEMENT =====
        session_id = request.session_id
        if not session_id:
            # Create new session (server-side)
            session_id = conversation_service.create_session(
                metadata={"user_agent": "api", "created_via": "chat_endpoint"},
                user_id=request.user_id  # NEW: Pass user_id from request
            )
            print(f"Created new session: {session_id} for user: {request.user_id or 'anonymous'}")
        else:
            # Validate existing session
            if not conversation_service.session_exists(session_id):
                raise HTTPException(
                    status_code=404, 
                    detail=f"Session {session_id} not found. It may have expired."
                )
        
        # Load conversation history
        conversation_history = conversation_service.get_conversation_history(session_id)
        
        # ===== 2. RAG SEARCH =====
        context_used = []
        rag_stats = None
        context_text = ""
        
        if request.use_rag:
            if request.use_advanced_rag:
                # Use Advanced RAG Pipeline
                hf_client = None
                if request.hf_token or hf_token:
                    hf_client = InferenceClient(token=request.hf_token or hf_token)
                
                documents, stats = advanced_rag.hybrid_rag_pipeline(
                    query=request.message,
                    top_k=request.top_k,
                    score_threshold=request.score_threshold,
                    use_reranking=request.use_reranking,
                    use_compression=request.use_compression,
                    use_query_expansion=request.use_query_expansion,
                    max_context_tokens=500,
                    hf_client=hf_client
                )
                
                # Convert to dict format
                context_used = [
                    {
                        "id": doc.id,
                        "confidence": doc.confidence,
                        "metadata": doc.metadata
                    }
                    for doc in documents
                ]
                rag_stats = stats
                
                # Format context
                context_text = advanced_rag.format_context_for_llm(documents)
            else:
                # Basic RAG
                query_embedding = embedding_service.encode_text(request.message)
                results = qdrant_service.search(
                    query_embedding=query_embedding,
                    limit=request.top_k,
                    score_threshold=request.score_threshold
                )
                context_used = results
                
                context_text = "\n\nRelevant Context:\n"
                for i, doc in enumerate(context_used, 1):
                    doc_text = doc["metadata"].get("text", "")
                    if not doc_text:
                        doc_text = " ".join(doc["metadata"].get("texts", []))
                    confidence = doc["confidence"]
                    context_text += f"\n[{i}] (Confidence: {confidence:.2f})\n{doc_text}\n"
        
        # ===== 3. BUILD MESSAGES với TOOLS PROMPT =====
        messages = []
        
        # System message với RAG context + Tools instruction
        if request.use_rag and context_used:
            if request.use_advanced_rag:
                base_prompt = advanced_rag.build_rag_prompt(
                    query="",  # Query sẽ đi trong user message
                    context=context_text,
                    system_message=request.system_message
                )
            else:
                base_prompt = f"""{request.system_message}



{context_text}



HƯỚNG DẪN:

- Sử dụng thông tin từ context trên để trả lời câu hỏi.

- Trả lời tự nhiên, thân thiện, không copy nguyên văn.

- Nếu tìm thấy sự kiện, hãy tóm tắt các thông tin quan trọng nhất.

"""
        else:
            base_prompt = request.system_message
        
        # Add tools instruction nếu enabled
        if request.enable_tools:
            tools_prompt = tools_service.get_tools_prompt()
            system_message_with_tools = f"{base_prompt}\n\n{tools_prompt}"
        else:
            system_message_with_tools = base_prompt
        
        # Bắt đầu messages với system
        messages.append({"role": "system", "content": system_message_with_tools})
        
        # Add conversation history (past turns)
        messages.extend(conversation_history)
        
        # Add current user message
        messages.append({"role": "user", "content": request.message})
        
        # ===== 4. LLM GENERATION =====
        token = request.hf_token or hf_token
        tool_calls_made = []
        
        if not token:
            response = f"""[LLM Response Placeholder]



Context retrieved: {len(context_used)} documents

User question: {request.message}

Session: {session_id}



To enable actual LLM generation:

1. Set HUGGINGFACE_TOKEN environment variable, OR

2. Pass hf_token in request body

"""
        else:
            try:
                client = InferenceClient(
                    token=token,
                    model="openai/gpt-oss-20b"  # Hoặc model khác
                )
                
                # First LLM call
                first_response = ""
                try:
                    for msg in client.chat_completion(
                        messages,
                        max_tokens=request.max_tokens,
                        stream=True,
                        temperature=request.temperature,
                        top_p=request.top_p,
                    ):
                        choices = msg.choices
                        if len(choices) and choices[0].delta.content:
                            first_response += choices[0].delta.content
                except Exception as e:
                    # HF API throws error when LLM returns JSON (tool call)
                    # Extract the "failed_generation" from error
                    error_str = str(e)
                    if "tool_use_failed" in error_str and "failed_generation" in error_str:
                        # Parse error dict to get the actual JSON response
                        import ast
                        try:
                            error_dict = ast.literal_eval(error_str)
                            first_response = error_dict.get("failed_generation", "")
                        except:
                            # Fallback: extract JSON from string
                            import re
                            match = re.search(r"'failed_generation': '({.*?})'", error_str)
                            if match:
                                first_response = match.group(1)
                            else:
                                raise e
                    else:
                        raise e
                
                # ===== 5. PARSE & EXECUTE TOOLS =====
                if request.enable_tools:
                    tool_result = await tools_service.parse_and_execute(first_response)
                    
                    if tool_result:
                        # Tool was called!
                        tool_calls_made.append(tool_result)
                        
                        # Add tool result to messages
                        messages.append({"role": "assistant", "content": first_response})
                        messages.append({
                            "role": "user", 
                            "content": f"TOOL RESULT:\n{json.dumps(tool_result['result'], ensure_ascii=False, indent=2)}\n\nHãy dùng thông tin này để trả lời câu hỏi của user."
                        })
                        
                        # Second LLM call với tool results
                        final_response = ""
                        for msg in client.chat_completion(
                            messages,
                            max_tokens=request.max_tokens,
                            stream=True,
                            temperature=request.temperature,
                            top_p=request.top_p,
                        ):
                            choices = msg.choices
                            if len(choices) and choices[0].delta.content:
                                final_response += choices[0].delta.content
                        
                        response = final_response
                    else:
                        # No tool call, use first response
                        response = first_response
                else:
                    response = first_response
                
            except Exception as e:
                response = f"Error generating response with LLM: {str(e)}\n\nContext was retrieved successfully, but LLM generation failed."
        
        # ===== 6. SAVE TO CONVERSATION HISTORY =====
        conversation_service.add_message(
            session_id, 
            "user", 
            request.message
        )
        conversation_service.add_message(
            session_id, 
            "assistant", 
            response,
            metadata={
                "rag_stats": rag_stats,
                "tool_calls": tool_calls_made,
                "context_count": len(context_used)
            }
        )
        
        # Also save to legacy chat_history collection
        chat_data = {
            "session_id": session_id,
            "user_message": request.message,
            "assistant_response": response,
            "context_used": context_used,
            "tool_calls": tool_calls_made,
            "timestamp": datetime.utcnow()
        }
        chat_history_collection.insert_one(chat_data)
        
        # ===== 7. RETURN RESPONSE =====
        return {
            "response": response,
            "context_used": context_used,
            "timestamp": datetime.utcnow().isoformat(),
            "rag_stats": rag_stats,
            "session_id": session_id,
            "tool_calls": tool_calls_made if tool_calls_made else None
        }
        
    except HTTPException:
        raise
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error: {str(e)}")