ChatbotRAG / advanced_rag.py
minhvtt's picture
Upload 13 files
358773d verified
raw
history blame
14 kB
"""
Advanced RAG techniques for improved retrieval and generation (Best Case 2025)
Includes: LLM-Based Query Expansion, Cross-Encoder Reranking, Contextual Compression, Hybrid Search
"""
from typing import List, Dict, Optional, Tuple
import numpy as np
from dataclasses import dataclass
import re
from sentence_transformers import CrossEncoder
@dataclass
class RetrievedDocument:
"""Document retrieved from vector database"""
id: str
text: str
confidence: float
metadata: Dict
class AdvancedRAG:
"""Advanced RAG system with 2025 best practices"""
def __init__(self, embedding_service, qdrant_service):
self.embedding_service = embedding_service
self.qdrant_service = qdrant_service
# Initialize Cross-Encoder for reranking (state-of-the-art)
print("Loading Cross-Encoder model for reranking...")
self.cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
print("✓ Cross-Encoder loaded")
def expand_query_llm(
self,
query: str,
hf_client=None
) -> List[str]:
"""
Expand query using LLM (Best Case 2025)
Generates query variations, sub-queries, and hypothetical answers
Args:
query: Original user query
hf_client: HuggingFace InferenceClient (optional)
Returns:
List of expanded queries
"""
queries = [query]
# Fallback to rule-based if no LLM client
if not hf_client:
return self._expand_query_rule_based(query)
try:
# LLM-based expansion prompt
expansion_prompt = f"""Given this user question, generate 2-3 alternative phrasings or sub-questions that would help retrieve relevant information.
User Question: {query}
Alternative queries (one per line):"""
# Generate expansions
response = ""
for msg in hf_client.chat_completion(
messages=[{"role": "user", "content": expansion_prompt}],
max_tokens=150,
stream=True,
temperature=0.7
):
if msg.choices and msg.choices[0].delta.content:
response += msg.choices[0].delta.content
# Parse expansions
lines = [line.strip() for line in response.split('\n') if line.strip()]
# Filter out numbered lists, dashes, etc.
clean_lines = []
for line in lines:
# Remove common list markers
cleaned = re.sub(r'^[\d\-\*\•]+[\.\)]\s*', '', line)
if cleaned and len(cleaned) > 5:
clean_lines.append(cleaned)
queries.extend(clean_lines[:3]) # Add top 3 expansions
except Exception as e:
print(f"LLM expansion failed, using rule-based: {e}")
return self._expand_query_rule_based(query)
return queries[:4] # Original + 3 expansions
def _expand_query_rule_based(self, query: str) -> List[str]:
"""
Fallback rule-based query expansion
Simple but effective Vietnamese-aware expansion
"""
queries = [query]
# Vietnamese question words
question_words = ['ai', 'gì', 'nào', 'đâu', 'khi nào', 'như thế nào',
'sao', 'tại sao', 'có', 'là', 'được', 'không', 'làm sao']
query_lower = query.lower()
for qw in question_words:
if qw in query_lower:
variant = query_lower.replace(qw, '').strip()
if variant and variant != query_lower:
queries.append(variant)
break # One variation is enough
# Extract key phrases
words = query.split()
if len(words) > 3:
key_phrases = ' '.join(words[1:]) if words[0].lower() in question_words else ' '.join(words[:3])
if key_phrases not in queries:
queries.append(key_phrases)
return queries[:3]
def multi_query_retrieval(
self,
query: str,
top_k: int = 5,
score_threshold: float = 0.5,
expanded_queries: Optional[List[str]] = None
) -> List[RetrievedDocument]:
"""
Retrieve documents using multiple query variations
Combines results from all query variations with deduplication
"""
if expanded_queries is None:
expanded_queries = [query]
all_results = {} # Deduplicate by doc_id
for q in expanded_queries:
# Generate embedding for each query variant
query_embedding = self.embedding_service.encode_text(q)
# Search in Qdrant
results = self.qdrant_service.search(
query_embedding=query_embedding,
limit=top_k,
score_threshold=score_threshold
)
# Add to results (keep highest score for duplicates)
for result in results:
doc_id = result["id"]
if doc_id not in all_results or result["confidence"] > all_results[doc_id].confidence:
all_results[doc_id] = RetrievedDocument(
id=doc_id,
text=result["metadata"].get("text", ""),
confidence=result["confidence"],
metadata=result["metadata"]
)
# Sort by confidence and return top_k
sorted_results = sorted(all_results.values(), key=lambda x: x.confidence, reverse=True)
return sorted_results[:top_k * 2] # Return more for reranking
def rerank_documents_cross_encoder(
self,
query: str,
documents: List[RetrievedDocument],
top_k: int = 5
) -> List[RetrievedDocument]:
"""
Rerank documents using Cross-Encoder (Best Case 2025)
Cross-Encoder provides superior relevance scoring compared to bi-encoders
Args:
query: Original user query
documents: Retrieved documents to rerank
top_k: Number of top documents to return
Returns:
Reranked documents
"""
if not documents:
return documents
# Prepare query-document pairs for Cross-Encoder
pairs = [[query, doc.text] for doc in documents]
# Get Cross-Encoder scores
ce_scores = self.cross_encoder.predict(pairs)
# Create reranked documents with new scores
reranked = []
for doc, ce_score in zip(documents, ce_scores):
# Combine CE score with original confidence (weighted)
combined_score = 0.7 * float(ce_score) + 0.3 * doc.confidence
reranked.append(RetrievedDocument(
id=doc.id,
text=doc.text,
confidence=float(combined_score),
metadata=doc.metadata
))
# Sort by new combined score
reranked.sort(key=lambda x: x.confidence, reverse=True)
return reranked[:top_k]
def compress_context(
self,
query: str,
documents: List[RetrievedDocument],
max_tokens: int = 500
) -> List[RetrievedDocument]:
"""
Compress context to most relevant parts
Remove redundant information and keep only relevant sentences
"""
compressed_docs = []
for doc in documents:
# Split into sentences
sentences = self._split_sentences(doc.text)
# Score each sentence based on relevance to query
scored_sentences = []
query_words = set(query.lower().split())
for sent in sentences:
sent_words = set(sent.lower().split())
# Simple relevance: word overlap
overlap = len(query_words & sent_words)
if overlap > 0:
scored_sentences.append((sent, overlap))
# Sort by relevance and take top sentences
scored_sentences.sort(key=lambda x: x[1], reverse=True)
# Reconstruct compressed text (up to max_tokens)
compressed_text = ""
word_count = 0
for sent, score in scored_sentences:
sent_words = len(sent.split())
if word_count + sent_words <= max_tokens:
compressed_text += sent + " "
word_count += sent_words
else:
break
# If nothing selected, take original first part
if not compressed_text.strip():
compressed_text = doc.text[:max_tokens * 5] # Rough estimate
compressed_docs.append(RetrievedDocument(
id=doc.id,
text=compressed_text.strip(),
confidence=doc.confidence,
metadata=doc.metadata
))
return compressed_docs
def _split_sentences(self, text: str) -> List[str]:
"""Split text into sentences (Vietnamese-aware)"""
sentences = re.split(r'[.!?]+', text)
return [s.strip() for s in sentences if s.strip()]
def hybrid_rag_pipeline(
self,
query: str,
top_k: int = 5,
score_threshold: float = 0.5,
use_reranking: bool = True,
use_compression: bool = True,
use_query_expansion: bool = True,
max_context_tokens: int = 500,
hf_client=None
) -> Tuple[List[RetrievedDocument], Dict]:
"""
Complete advanced RAG pipeline (Best Case 2025)
1. LLM-based query expansion
2. Multi-query retrieval
3. Cross-Encoder reranking
4. Contextual compression
Args:
query: User query
top_k: Number of documents to return
score_threshold: Minimum relevance score
use_reranking: Enable Cross-Encoder reranking
use_compression: Enable context compression
use_query_expansion: Enable LLM-based query expansion
max_context_tokens: Max tokens for compression
hf_client: HuggingFace InferenceClient for expansion
Returns:
(documents, stats)
"""
stats = {
"original_query": query,
"expanded_queries": [],
"initial_results": 0,
"after_rerank": 0,
"after_compression": 0,
"used_cross_encoder": use_reranking,
"used_llm_expansion": use_query_expansion and hf_client is not None
}
# Step 1: Query Expansion (LLM-based or rule-based)
if use_query_expansion:
expanded_queries = self.expand_query_llm(query, hf_client)
else:
expanded_queries = [query]
stats["expanded_queries"] = expanded_queries
# Step 2: Multi-query retrieval
documents = self.multi_query_retrieval(
query=query,
top_k=top_k * 2, # Get more candidates for reranking
score_threshold=score_threshold,
expanded_queries=expanded_queries
)
stats["initial_results"] = len(documents)
# Step 3: Cross-Encoder Reranking (Best Case 2025)
if use_reranking and documents:
documents = self.rerank_documents_cross_encoder(
query=query,
documents=documents,
top_k=top_k
)
else:
documents = documents[:top_k]
stats["after_rerank"] = len(documents)
# Step 4: Contextual compression (optional)
if use_compression and documents:
documents = self.compress_context(
query=query,
documents=documents,
max_tokens=max_context_tokens
)
stats["after_compression"] = len(documents)
return documents, stats
def format_context_for_llm(
self,
documents: List[RetrievedDocument],
include_metadata: bool = True
) -> str:
"""
Format retrieved documents into context string for LLM
Uses better structure for improved LLM understanding
"""
if not documents:
return ""
context_parts = ["RELEVANT CONTEXT:\n"]
for i, doc in enumerate(documents, 1):
context_parts.append(f"\n--- Document {i} (Relevance: {doc.confidence:.2%}) ---")
context_parts.append(doc.text)
if include_metadata and doc.metadata:
# Add useful metadata
meta_str = []
for key, value in doc.metadata.items():
if key not in ['text', 'texts'] and value:
meta_str.append(f"{key}: {value}")
if meta_str:
context_parts.append(f"[Metadata: {', '.join(meta_str)}]")
context_parts.append("\n--- End of Context ---\n")
return "\n".join(context_parts)
def build_rag_prompt(
self,
query: str,
context: str,
system_message: str = "You are a helpful AI assistant."
) -> str:
"""
Build optimized RAG prompt for LLM
Uses best practices for prompt engineering
"""
prompt_template = f"""{system_message}
{context}
INSTRUCTIONS:
1. Answer the user's question using ONLY the information provided in the context above
2. If the context doesn't contain relevant information, say "Tôi không tìm thấy thông tin liên quan trong dữ liệu."
3. Cite relevant parts of the context when answering
4. Be concise and accurate
5. Answer in Vietnamese if the question is in Vietnamese
USER QUESTION: {query}
YOUR ANSWER:"""
return prompt_template