ChatbotRAG / chatbot_rag_api.py
minhvtt's picture
Update chatbot_rag_api.py
05351f2 verified
raw
history blame
13.4 kB
from fastapi import FastAPI, HTTPException, File, UploadFile, Form
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import Optional, List, Dict
from pymongo import MongoClient
from datetime import datetime
import numpy as np
import os
from huggingface_hub import InferenceClient
from embedding_service import JinaClipEmbeddingService
from qdrant_service import QdrantVectorService
# Pydantic models
class ChatRequest(BaseModel):
message: str
use_rag: bool = True
top_k: int = 3
system_message: Optional[str] = "You are a helpful AI assistant."
max_tokens: int = 512
temperature: float = 0.7
top_p: float = 0.95
hf_token: Optional[str] = None # Hugging Face token (optional, sẽ dùng env nếu không truyền)
class ChatResponse(BaseModel):
response: str
context_used: List[Dict]
timestamp: str
class AddDocumentRequest(BaseModel):
text: str
metadata: Optional[Dict] = None
class AddDocumentResponse(BaseModel):
success: bool
doc_id: str
message: str
class SearchRequest(BaseModel):
query: str
top_k: int = 5
score_threshold: Optional[float] = 0.5
class SearchResponse(BaseModel):
results: List[Dict]
# Initialize FastAPI
app = FastAPI(
title="ChatbotRAG API",
description="API for RAG Chatbot with GPT-OSS-20B + Jina CLIP v2 + MongoDB + Qdrant",
version="1.0.0"
)
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Cho phép tất cả origins (có thể giới hạn trong production)
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# ChatbotRAG Service
class ChatbotRAGService:
"""
ChatbotRAG Service cho API
"""
def __init__(
self,
mongodb_uri: str = "mongodb+srv://truongtn7122003:7KaI9OT5KTUxWjVI@truongtn7122003.xogin4q.mongodb.net/",
db_name: str = "chatbot_rag",
collection_name: str = "documents",
hf_token: Optional[str] = None
):
print("Initializing ChatbotRAG Service...")
# MongoDB
self.mongo_client = MongoClient(mongodb_uri)
self.db = self.mongo_client[db_name]
self.documents_collection = self.db[collection_name]
self.chat_history_collection = self.db["chat_history"]
# Embedding service
self.embedding_service = JinaClipEmbeddingService(
model_path="jinaai/jina-clip-v2"
)
# Qdrant
collection_name = os.getenv("COLLECTION_NAME","event_social_media")
self.qdrant_service = QdrantVectorService(
collection_name= collection_name,
vector_size=self.embedding_service.get_embedding_dimension()
)
# Hugging Face token (từ env hoặc truyền vào)
self.hf_token = hf_token or os.getenv("HUGGINGFACE_TOKEN")
if self.hf_token:
print("✓ Hugging Face token configured")
else:
print("⚠ No Hugging Face token - LLM generation will use placeholder")
print("✓ ChatbotRAG Service initialized")
def add_document(self, text: str, metadata: Dict = None) -> str:
"""Add document to knowledge base"""
# Save to MongoDB
doc_data = {
"text": text,
"metadata": metadata or {},
"created_at": datetime.utcnow()
}
result = self.documents_collection.insert_one(doc_data)
doc_id = str(result.inserted_id)
# Generate embedding
embedding = self.embedding_service.encode_text(text)
# Index to Qdrant
self.qdrant_service.index_data(
doc_id=doc_id,
embedding=embedding,
metadata={
"text": text,
"source": "api",
**(metadata or {})
}
)
return doc_id
def retrieve_context(self, query: str, top_k: int = 3, score_threshold: float = 0.5) -> List[Dict]:
"""Retrieve relevant context from vector DB"""
# Generate query embedding
query_embedding = self.embedding_service.encode_text(query)
# Search in Qdrant
results = self.qdrant_service.search(
query_embedding=query_embedding,
limit=top_k,
score_threshold=score_threshold
)
return results
def generate_response(
self,
message: str,
context: List[Dict],
system_message: str,
max_tokens: int = 512,
temperature: float = 0.7,
top_p: float = 0.95,
hf_token: Optional[str] = None
) -> str:
"""
Generate response using Hugging Face LLM
"""
# Build context text
context_text = ""
if context:
context_text = "\n\nRelevant Context:\n"
for i, doc in enumerate(context, 1):
doc_text = doc["metadata"].get("text", "")
confidence = doc["confidence"]
context_text += f"\n[{i}] (Confidence: {confidence:.2f})\n{doc_text}\n"
# Add context to system message
system_message = f"{system_message}\n{context_text}\n\nPlease use the above context to answer the user's question when relevant."
# Use token from request or fallback to service token
token = hf_token or self.hf_token
# If no token available, return placeholder
if not token:
return f"""[LLM Response Placeholder]
Context retrieved: {len(context)} documents
User question: {message}
To enable actual LLM generation:
1. Set HUGGINGFACE_TOKEN environment variable, OR
2. Pass hf_token in request body
Example:
{{
"message": "Your question",
"hf_token": "hf_xxxxxxxxxxxxx"
}}
"""
# Initialize HF Inference Client
try:
client = InferenceClient(
token=token,
model="openai/gpt-oss-20b"
)
# Build messages
messages = [
{"role": "system", "content": system_message},
{"role": "user", "content": message}
]
# Generate response (non-streaming for API)
response = ""
for msg in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
choices = msg.choices
if len(choices) and choices[0].delta.content:
response += choices[0].delta.content
return response
except Exception as e:
return f"Error generating response with LLM: {str(e)}\n\nContext was retrieved successfully, but LLM generation failed."
def save_chat_history(self, user_message: str, assistant_response: str, context_used: List[Dict]):
"""Save chat to MongoDB"""
chat_data = {
"user_message": user_message,
"assistant_response": assistant_response,
"context_used": context_used,
"timestamp": datetime.utcnow()
}
self.chat_history_collection.insert_one(chat_data)
def get_stats(self) -> Dict:
"""Get statistics"""
return {
"documents_count": self.documents_collection.count_documents({}),
"chat_history_count": self.chat_history_collection.count_documents({}),
"qdrant_info": self.qdrant_service.get_collection_info()
}
# Initialize service
rag_service = ChatbotRAGService()
# API Endpoints
@app.get("/")
async def root():
"""Health check"""
return {
"status": "running",
"service": "ChatbotRAG API",
"version": "1.0.0",
"endpoints": {
"POST /chat": "Chat with RAG",
"POST /documents": "Add document to knowledge base",
"POST /search": "Search in knowledge base",
"GET /stats": "Get statistics",
"GET /history": "Get chat history"
}
}
@app.post("/chat", response_model=ChatResponse)
async def chat(request: ChatRequest):
"""
Chat endpoint with RAG
Body:
- message: User message
- use_rag: Enable RAG retrieval (default: true)
- top_k: Number of documents to retrieve (default: 3)
- system_message: System prompt (optional)
- max_tokens: Max tokens for response (default: 512)
- temperature: Temperature for generation (default: 0.7)
Returns:
- response: Generated response
- context_used: Retrieved context documents
- timestamp: Response timestamp
"""
try:
# Retrieve context if RAG enabled
context_used = []
if request.use_rag:
context_used = rag_service.retrieve_context(
query=request.message,
top_k=request.top_k
)
# Generate response
response = rag_service.generate_response(
message=request.message,
context=context_used,
system_message=request.system_message,
max_tokens=request.max_tokens,
temperature=request.temperature,
top_p=request.top_p,
hf_token=request.hf_token
)
# Save to history
rag_service.save_chat_history(
user_message=request.message,
assistant_response=response,
context_used=context_used
)
return ChatResponse(
response=response,
context_used=context_used,
timestamp=datetime.utcnow().isoformat()
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
@app.post("/documents", response_model=AddDocumentResponse)
async def add_document(request: AddDocumentRequest):
"""
Add document to knowledge base
Body:
- text: Document text
- metadata: Additional metadata (optional)
Returns:
- success: True/False
- doc_id: MongoDB document ID
- message: Status message
"""
try:
doc_id = rag_service.add_document(
text=request.text,
metadata=request.metadata
)
return AddDocumentResponse(
success=True,
doc_id=doc_id,
message=f"Document added successfully with ID: {doc_id}"
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
@app.post("/search", response_model=SearchResponse)
async def search(request: SearchRequest):
"""
Search in knowledge base
Body:
- query: Search query
- top_k: Number of results (default: 5)
- score_threshold: Minimum score (default: 0.5)
Returns:
- results: List of matching documents
"""
try:
results = rag_service.retrieve_context(
query=request.query,
top_k=request.top_k,
score_threshold=request.score_threshold
)
return SearchResponse(results=results)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
@app.get("/stats")
async def get_stats():
"""
Get statistics
Returns:
- documents_count: Number of documents in MongoDB
- chat_history_count: Number of chat messages
- qdrant_info: Qdrant collection info
"""
try:
return rag_service.get_stats()
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
@app.get("/history")
async def get_history(limit: int = 10, skip: int = 0):
"""
Get chat history
Query params:
- limit: Number of messages to return (default: 10)
- skip: Number of messages to skip (default: 0)
Returns:
- history: List of chat messages
"""
try:
history = list(
rag_service.chat_history_collection
.find({}, {"_id": 0})
.sort("timestamp", -1)
.skip(skip)
.limit(limit)
)
# Convert datetime to string
for msg in history:
if "timestamp" in msg:
msg["timestamp"] = msg["timestamp"].isoformat()
return {"history": history, "total": rag_service.chat_history_collection.count_documents({})}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
@app.delete("/documents/{doc_id}")
async def delete_document(doc_id: str):
"""
Delete document from knowledge base
Args:
- doc_id: Document ID (MongoDB ObjectId)
Returns:
- success: True/False
- message: Status message
"""
try:
# Delete from MongoDB
result = rag_service.documents_collection.delete_one({"_id": doc_id})
# Delete from Qdrant
if result.deleted_count > 0:
rag_service.qdrant_service.delete_by_id(doc_id)
return {"success": True, "message": f"Document {doc_id} deleted"}
else:
raise HTTPException(status_code=404, detail=f"Document {doc_id} not found")
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
if __name__ == "__main__":
import uvicorn
uvicorn.run(
app,
host="0.0.0.0",
port=8000,
log_level="info"
)