Spaces:
Running
Running
Upload 14 files
Browse files- chat_endpoint.py +261 -0
- chat_routes_integration.py +116 -0
- conversation_service.py +184 -0
- main.py +26 -1
- tools_service.py +164 -0
chat_endpoint.py
ADDED
|
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Chat endpoint với Multi-turn Conversation + Function Calling
|
| 3 |
+
"""
|
| 4 |
+
from fastapi import HTTPException
|
| 5 |
+
from datetime import datetime
|
| 6 |
+
from huggingface_hub import InferenceClient
|
| 7 |
+
from typing import Dict, List
|
| 8 |
+
import json
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
async def chat_endpoint(
|
| 12 |
+
request, # ChatRequest
|
| 13 |
+
conversation_service,
|
| 14 |
+
tools_service,
|
| 15 |
+
advanced_rag,
|
| 16 |
+
embedding_service,
|
| 17 |
+
qdrant_service,
|
| 18 |
+
chat_history_collection,
|
| 19 |
+
hf_token
|
| 20 |
+
):
|
| 21 |
+
"""
|
| 22 |
+
Multi-turn conversational chatbot với RAG + Function Calling
|
| 23 |
+
|
| 24 |
+
Flow:
|
| 25 |
+
1. Session management - create hoặc load existing session
|
| 26 |
+
2. RAG search - retrieve context nếu enabled
|
| 27 |
+
3. Build messages với conversation history + tools prompt
|
| 28 |
+
4. LLM generation - có thể trigger tool calls
|
| 29 |
+
5. Execute tools nếu cần
|
| 30 |
+
6. Final LLM response với tool results
|
| 31 |
+
7. Save to conversation history
|
| 32 |
+
"""
|
| 33 |
+
try:
|
| 34 |
+
# ===== 1. SESSION MANAGEMENT =====
|
| 35 |
+
session_id = request.session_id
|
| 36 |
+
if not session_id:
|
| 37 |
+
# Create new session (server-side)
|
| 38 |
+
session_id = conversation_service.create_session(
|
| 39 |
+
metadata={"user_agent": "api", "created_via": "chat_endpoint"}
|
| 40 |
+
)
|
| 41 |
+
print(f"Created new session: {session_id}")
|
| 42 |
+
else:
|
| 43 |
+
# Validate existing session
|
| 44 |
+
if not conversation_service.session_exists(session_id):
|
| 45 |
+
raise HTTPException(
|
| 46 |
+
status_code=404,
|
| 47 |
+
detail=f"Session {session_id} not found. It may have expired."
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
# Load conversation history
|
| 51 |
+
conversation_history = conversation_service.get_conversation_history(session_id)
|
| 52 |
+
|
| 53 |
+
# ===== 2. RAG SEARCH =====
|
| 54 |
+
context_used = []
|
| 55 |
+
rag_stats = None
|
| 56 |
+
context_text = ""
|
| 57 |
+
|
| 58 |
+
if request.use_rag:
|
| 59 |
+
if request.use_advanced_rag:
|
| 60 |
+
# Use Advanced RAG Pipeline
|
| 61 |
+
hf_client = None
|
| 62 |
+
if request.hf_token or hf_token:
|
| 63 |
+
hf_client = InferenceClient(token=request.hf_token or hf_token)
|
| 64 |
+
|
| 65 |
+
documents, stats = advanced_rag.hybrid_rag_pipeline(
|
| 66 |
+
query=request.message,
|
| 67 |
+
top_k=request.top_k,
|
| 68 |
+
score_threshold=request.score_threshold,
|
| 69 |
+
use_reranking=request.use_reranking,
|
| 70 |
+
use_compression=request.use_compression,
|
| 71 |
+
use_query_expansion=request.use_query_expansion,
|
| 72 |
+
max_context_tokens=500,
|
| 73 |
+
hf_client=hf_client
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
# Convert to dict format
|
| 77 |
+
context_used = [
|
| 78 |
+
{
|
| 79 |
+
"id": doc.id,
|
| 80 |
+
"confidence": doc.confidence,
|
| 81 |
+
"metadata": doc.metadata
|
| 82 |
+
}
|
| 83 |
+
for doc in documents
|
| 84 |
+
]
|
| 85 |
+
rag_stats = stats
|
| 86 |
+
|
| 87 |
+
# Format context
|
| 88 |
+
context_text = advanced_rag.format_context_for_llm(documents)
|
| 89 |
+
else:
|
| 90 |
+
# Basic RAG
|
| 91 |
+
query_embedding = embedding_service.encode_text(request.message)
|
| 92 |
+
results = qdrant_service.search(
|
| 93 |
+
query_embedding=query_embedding,
|
| 94 |
+
limit=request.top_k,
|
| 95 |
+
score_threshold=request.score_threshold
|
| 96 |
+
)
|
| 97 |
+
context_used = results
|
| 98 |
+
|
| 99 |
+
context_text = "\n\nRelevant Context:\n"
|
| 100 |
+
for i, doc in enumerate(context_used, 1):
|
| 101 |
+
doc_text = doc["metadata"].get("text", "")
|
| 102 |
+
if not doc_text:
|
| 103 |
+
doc_text = " ".join(doc["metadata"].get("texts", []))
|
| 104 |
+
confidence = doc["confidence"]
|
| 105 |
+
context_text += f"\n[{i}] (Confidence: {confidence:.2f})\n{doc_text}\n"
|
| 106 |
+
|
| 107 |
+
# ===== 3. BUILD MESSAGES với TOOLS PROMPT =====
|
| 108 |
+
messages = []
|
| 109 |
+
|
| 110 |
+
# System message với RAG context + Tools instruction
|
| 111 |
+
if request.use_rag and context_used:
|
| 112 |
+
if request.use_advanced_rag:
|
| 113 |
+
base_prompt = advanced_rag.build_rag_prompt(
|
| 114 |
+
query="", # Query sẽ đi trong user message
|
| 115 |
+
context=context_text,
|
| 116 |
+
system_message=request.system_message
|
| 117 |
+
)
|
| 118 |
+
else:
|
| 119 |
+
base_prompt = f"""{request.system_message}
|
| 120 |
+
|
| 121 |
+
{context_text}
|
| 122 |
+
|
| 123 |
+
HƯỚNG DẪN:
|
| 124 |
+
- Sử dụng thông tin từ context trên để trả lời câu hỏi.
|
| 125 |
+
- Trả lời tự nhiên, thân thiện, không copy nguyên văn.
|
| 126 |
+
- Nếu tìm thấy sự kiện, hãy tóm tắt các thông tin quan trọng nhất.
|
| 127 |
+
"""
|
| 128 |
+
else:
|
| 129 |
+
base_prompt = request.system_message
|
| 130 |
+
|
| 131 |
+
# Add tools instruction nếu enabled
|
| 132 |
+
if request.enable_tools:
|
| 133 |
+
tools_prompt = tools_service.get_tools_prompt()
|
| 134 |
+
system_message_with_tools = f"{base_prompt}\n\n{tools_prompt}"
|
| 135 |
+
else:
|
| 136 |
+
system_message_with_tools = base_prompt
|
| 137 |
+
|
| 138 |
+
# Bắt đầu messages với system
|
| 139 |
+
messages.append({"role": "system", "content": system_message_with_tools})
|
| 140 |
+
|
| 141 |
+
# Add conversation history (past turns)
|
| 142 |
+
messages.extend(conversation_history)
|
| 143 |
+
|
| 144 |
+
# Add current user message
|
| 145 |
+
messages.append({"role": "user", "content": request.message})
|
| 146 |
+
|
| 147 |
+
# ===== 4. LLM GENERATION =====
|
| 148 |
+
token = request.hf_token or hf_token
|
| 149 |
+
tool_calls_made = []
|
| 150 |
+
|
| 151 |
+
if not token:
|
| 152 |
+
response = f"""[LLM Response Placeholder]
|
| 153 |
+
|
| 154 |
+
Context retrieved: {len(context_used)} documents
|
| 155 |
+
User question: {request.message}
|
| 156 |
+
Session: {session_id}
|
| 157 |
+
|
| 158 |
+
To enable actual LLM generation:
|
| 159 |
+
1. Set HUGGINGFACE_TOKEN environment variable, OR
|
| 160 |
+
2. Pass hf_token in request body
|
| 161 |
+
"""
|
| 162 |
+
else:
|
| 163 |
+
try:
|
| 164 |
+
client = InferenceClient(
|
| 165 |
+
token=token,
|
| 166 |
+
model="openai/gpt-oss-20b" # Hoặc model khác
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
# First LLM call
|
| 170 |
+
first_response = ""
|
| 171 |
+
for msg in client.chat_completion(
|
| 172 |
+
messages,
|
| 173 |
+
max_tokens=request.max_tokens,
|
| 174 |
+
stream=True,
|
| 175 |
+
temperature=request.temperature,
|
| 176 |
+
top_p=request.top_p,
|
| 177 |
+
):
|
| 178 |
+
choices = msg.choices
|
| 179 |
+
if len(choices) and choices[0].delta.content:
|
| 180 |
+
first_response += choices[0].delta.content
|
| 181 |
+
|
| 182 |
+
# ===== 5. PARSE & EXECUTE TOOLS =====
|
| 183 |
+
if request.enable_tools:
|
| 184 |
+
tool_result = await tools_service.parse_and_execute(first_response)
|
| 185 |
+
|
| 186 |
+
if tool_result:
|
| 187 |
+
# Tool was called!
|
| 188 |
+
tool_calls_made.append(tool_result)
|
| 189 |
+
|
| 190 |
+
# Add tool result to messages
|
| 191 |
+
messages.append({"role": "assistant", "content": first_response})
|
| 192 |
+
messages.append({
|
| 193 |
+
"role": "user",
|
| 194 |
+
"content": f"TOOL RESULT:\n{json.dumps(tool_result['result'], ensure_ascii=False, indent=2)}\n\nHãy dùng thông tin này để trả lời câu hỏi của user."
|
| 195 |
+
})
|
| 196 |
+
|
| 197 |
+
# Second LLM call với tool results
|
| 198 |
+
final_response = ""
|
| 199 |
+
for msg in client.chat_completion(
|
| 200 |
+
messages,
|
| 201 |
+
max_tokens=request.max_tokens,
|
| 202 |
+
stream=True,
|
| 203 |
+
temperature=request.temperature,
|
| 204 |
+
top_p=request.top_p,
|
| 205 |
+
):
|
| 206 |
+
choices = msg.choices
|
| 207 |
+
if len(choices) and choices[0].delta.content:
|
| 208 |
+
final_response += choices[0].delta.content
|
| 209 |
+
|
| 210 |
+
response = final_response
|
| 211 |
+
else:
|
| 212 |
+
# No tool call, use first response
|
| 213 |
+
response = first_response
|
| 214 |
+
else:
|
| 215 |
+
response = first_response
|
| 216 |
+
|
| 217 |
+
except Exception as e:
|
| 218 |
+
response = f"Error generating response with LLM: {str(e)}\n\nContext was retrieved successfully, but LLM generation failed."
|
| 219 |
+
|
| 220 |
+
# ===== 6. SAVE TO CONVERSATION HISTORY =====
|
| 221 |
+
conversation_service.add_message(
|
| 222 |
+
session_id,
|
| 223 |
+
"user",
|
| 224 |
+
request.message
|
| 225 |
+
)
|
| 226 |
+
conversation_service.add_message(
|
| 227 |
+
session_id,
|
| 228 |
+
"assistant",
|
| 229 |
+
response,
|
| 230 |
+
metadata={
|
| 231 |
+
"rag_stats": rag_stats,
|
| 232 |
+
"tool_calls": tool_calls_made,
|
| 233 |
+
"context_count": len(context_used)
|
| 234 |
+
}
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
# Also save to legacy chat_history collection
|
| 238 |
+
chat_data = {
|
| 239 |
+
"session_id": session_id,
|
| 240 |
+
"user_message": request.message,
|
| 241 |
+
"assistant_response": response,
|
| 242 |
+
"context_used": context_used,
|
| 243 |
+
"tool_calls": tool_calls_made,
|
| 244 |
+
"timestamp": datetime.utcnow()
|
| 245 |
+
}
|
| 246 |
+
chat_history_collection.insert_one(chat_data)
|
| 247 |
+
|
| 248 |
+
# ===== 7. RETURN RESPONSE =====
|
| 249 |
+
return {
|
| 250 |
+
"response": response,
|
| 251 |
+
"context_used": context_used,
|
| 252 |
+
"timestamp": datetime.utcnow().isoformat(),
|
| 253 |
+
"rag_stats": rag_stats,
|
| 254 |
+
"session_id": session_id,
|
| 255 |
+
"tool_calls": tool_calls_made if tool_calls_made else None
|
| 256 |
+
}
|
| 257 |
+
|
| 258 |
+
except HTTPException:
|
| 259 |
+
raise
|
| 260 |
+
except Exception as e:
|
| 261 |
+
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
|
chat_routes_integration.py
ADDED
|
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Integration code để thêm vào main.py
|
| 2 |
+
|
| 3 |
+
# ADD THIS IMPORT near line 20:
|
| 4 |
+
from chat_endpoint import chat_endpoint
|
| 5 |
+
|
| 6 |
+
# ADD THESE ROUTES before "if __name__ == '__main__':" (around line 1000):
|
| 7 |
+
|
| 8 |
+
@app.post("/chat", response_model=ChatResponse)
|
| 9 |
+
async def chat(request: ChatRequest):
|
| 10 |
+
"""
|
| 11 |
+
Multi-turn conversational chatbot với RAG + Function Calling
|
| 12 |
+
|
| 13 |
+
Features:
|
| 14 |
+
- Server-side session management
|
| 15 |
+
- Conversation history tracking
|
| 16 |
+
- RAG context retrieval
|
| 17 |
+
- Function calling (API integration)
|
| 18 |
+
|
| 19 |
+
Example:
|
| 20 |
+
```
|
| 21 |
+
# First message - creates session
|
| 22 |
+
POST /chat
|
| 23 |
+
{
|
| 24 |
+
"message": "Tìm sự kiện hòa nhạc",
|
| 25 |
+
"use_rag": true
|
| 26 |
+
}
|
| 27 |
+
Response: { "session_id": "abc-123", ... }
|
| 28 |
+
|
| 29 |
+
# Follow-up message - uses session
|
| 30 |
+
POST /chat
|
| 31 |
+
{
|
| 32 |
+
"message": "Ngày tổ chức chính xác là khi nào?",
|
| 33 |
+
"session_id": "abc-123"
|
| 34 |
+
}
|
| 35 |
+
# Bot understands context và calls API nếu cần
|
| 36 |
+
```
|
| 37 |
+
"""
|
| 38 |
+
return await chat_endpoint(
|
| 39 |
+
request=request,
|
| 40 |
+
conversation_service=conversation_service,
|
| 41 |
+
tools_service=tools_service,
|
| 42 |
+
advanced_rag=advanced_rag,
|
| 43 |
+
embedding_service=embedding_service,
|
| 44 |
+
qdrant_service=qdrant_service,
|
| 45 |
+
chat_history_collection=chat_history_collection,
|
| 46 |
+
hf_token=hf_token
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
@app.post("/chat/clear-session")
|
| 51 |
+
async def clear_chat_session(session_id: str):
|
| 52 |
+
"""
|
| 53 |
+
Clear conversation history cho một session
|
| 54 |
+
|
| 55 |
+
Args:
|
| 56 |
+
session_id: Session identifier to clear
|
| 57 |
+
|
| 58 |
+
Returns:
|
| 59 |
+
Success message
|
| 60 |
+
|
| 61 |
+
Example:
|
| 62 |
+
```
|
| 63 |
+
POST /chat/clear-session?session_id=abc-123
|
| 64 |
+
```
|
| 65 |
+
"""
|
| 66 |
+
success = conversation_service.clear_session(session_id)
|
| 67 |
+
|
| 68 |
+
if success:
|
| 69 |
+
return {
|
| 70 |
+
"success": True,
|
| 71 |
+
"message": f"Session {session_id} cleared successfully"
|
| 72 |
+
}
|
| 73 |
+
else:
|
| 74 |
+
raise HTTPException(
|
| 75 |
+
status_code=404,
|
| 76 |
+
detail=f"Session {session_id} not found or already cleared"
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
@app.get("/chat/session/{session_id}")
|
| 81 |
+
async def get_session_info(session_id: str):
|
| 82 |
+
"""
|
| 83 |
+
Get thông tin về một conversation session
|
| 84 |
+
|
| 85 |
+
Args:
|
| 86 |
+
session_id: Session identifier
|
| 87 |
+
|
| 88 |
+
Returns:
|
| 89 |
+
Session metadata và message count
|
| 90 |
+
|
| 91 |
+
Example:
|
| 92 |
+
```
|
| 93 |
+
GET /chat/session/abc-123
|
| 94 |
+
```
|
| 95 |
+
"""
|
| 96 |
+
session = conversation_service.get_session_info(session_id)
|
| 97 |
+
|
| 98 |
+
if not session:
|
| 99 |
+
raise HTTPException(
|
| 100 |
+
status_code=404,
|
| 101 |
+
detail=f"Session {session_id} not found"
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
# Get message count
|
| 105 |
+
history = conversation_service.get_conversation_history(
|
| 106 |
+
session_id,
|
| 107 |
+
include_metadata=True
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
return {
|
| 111 |
+
"session_id": session["session_id"],
|
| 112 |
+
"created_at": session["created_at"],
|
| 113 |
+
"updated_at": session["updated_at"],
|
| 114 |
+
"message_count": len(history),
|
| 115 |
+
"metadata": session.get("metadata", {})
|
| 116 |
+
}
|
conversation_service.py
ADDED
|
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Conversation Service for Multi-turn Chat
|
| 3 |
+
Server-side session management
|
| 4 |
+
"""
|
| 5 |
+
from typing import List, Dict, Optional
|
| 6 |
+
from datetime import datetime
|
| 7 |
+
from pymongo.collection import Collection
|
| 8 |
+
import uuid
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class ConversationService:
|
| 12 |
+
"""
|
| 13 |
+
Manages multi-turn conversation history với server-side session
|
| 14 |
+
"""
|
| 15 |
+
|
| 16 |
+
def __init__(self, mongo_collection: Collection, max_history: int = 10):
|
| 17 |
+
"""
|
| 18 |
+
Args:
|
| 19 |
+
mongo_collection: MongoDB collection for storing conversations
|
| 20 |
+
max_history: Maximum số messages giữ lại (sliding window)
|
| 21 |
+
"""
|
| 22 |
+
self.collection = mongo_collection
|
| 23 |
+
self.max_history = max_history
|
| 24 |
+
|
| 25 |
+
# Create indexes
|
| 26 |
+
self._ensure_indexes()
|
| 27 |
+
|
| 28 |
+
def _ensure_indexes(self):
|
| 29 |
+
"""Create necessary indexes"""
|
| 30 |
+
try:
|
| 31 |
+
self.collection.create_index("session_id", unique=True)
|
| 32 |
+
# Auto-delete sessions sau 7 ngày không dùng
|
| 33 |
+
self.collection.create_index(
|
| 34 |
+
"updated_at",
|
| 35 |
+
expireAfterSeconds=604800 # 7 days
|
| 36 |
+
)
|
| 37 |
+
print("✓ Conversation indexes created")
|
| 38 |
+
except Exception as e:
|
| 39 |
+
print(f"Conversation indexes already exist or error: {e}")
|
| 40 |
+
|
| 41 |
+
def create_session(self, metadata: Optional[Dict] = None) -> str:
|
| 42 |
+
"""
|
| 43 |
+
Create new conversation session
|
| 44 |
+
|
| 45 |
+
Returns:
|
| 46 |
+
session_id (UUID string)
|
| 47 |
+
"""
|
| 48 |
+
session_id = str(uuid.uuid4())
|
| 49 |
+
|
| 50 |
+
self.collection.insert_one({
|
| 51 |
+
"session_id": session_id,
|
| 52 |
+
"messages": [],
|
| 53 |
+
"metadata": metadata or {},
|
| 54 |
+
"created_at": datetime.utcnow(),
|
| 55 |
+
"updated_at": datetime.utcnow()
|
| 56 |
+
})
|
| 57 |
+
|
| 58 |
+
return session_id
|
| 59 |
+
|
| 60 |
+
def add_message(
|
| 61 |
+
self,
|
| 62 |
+
session_id: str,
|
| 63 |
+
role: str,
|
| 64 |
+
content: str,
|
| 65 |
+
metadata: Optional[Dict] = None
|
| 66 |
+
):
|
| 67 |
+
"""
|
| 68 |
+
Add message to conversation history
|
| 69 |
+
|
| 70 |
+
Args:
|
| 71 |
+
session_id: Session identifier
|
| 72 |
+
role: "user" or "assistant"
|
| 73 |
+
content: Message text
|
| 74 |
+
metadata: Additional info (rag_stats, tool_calls, etc.)
|
| 75 |
+
"""
|
| 76 |
+
message = {
|
| 77 |
+
"role": role,
|
| 78 |
+
"content": content,
|
| 79 |
+
"timestamp": datetime.utcnow().isoformat(),
|
| 80 |
+
"metadata": metadata or {}
|
| 81 |
+
}
|
| 82 |
+
|
| 83 |
+
# Upsert: tạo session nếu chưa tồn tại
|
| 84 |
+
self.collection.update_one(
|
| 85 |
+
{"session_id": session_id},
|
| 86 |
+
{
|
| 87 |
+
"$push": {
|
| 88 |
+
"messages": {
|
| 89 |
+
"$each": [message],
|
| 90 |
+
"$slice": -self.max_history # Keep only last N messages
|
| 91 |
+
}
|
| 92 |
+
},
|
| 93 |
+
"$set": {"updated_at": datetime.utcnow()}
|
| 94 |
+
},
|
| 95 |
+
upsert=True
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
def get_conversation_history(
|
| 99 |
+
self,
|
| 100 |
+
session_id: str,
|
| 101 |
+
limit: Optional[int] = None,
|
| 102 |
+
include_metadata: bool = False
|
| 103 |
+
) -> List[Dict]:
|
| 104 |
+
"""
|
| 105 |
+
Get conversation messages for LLM context
|
| 106 |
+
|
| 107 |
+
Args:
|
| 108 |
+
session_id: Session identifier
|
| 109 |
+
limit: Override max_history với số lượng tùy chỉnh
|
| 110 |
+
include_metadata: Include metadata trong response
|
| 111 |
+
|
| 112 |
+
Returns:
|
| 113 |
+
List of messages in format: [{"role": "user", "content": "..."}, ...]
|
| 114 |
+
"""
|
| 115 |
+
session = self.collection.find_one({"session_id": session_id})
|
| 116 |
+
|
| 117 |
+
if not session:
|
| 118 |
+
return []
|
| 119 |
+
|
| 120 |
+
messages = session.get("messages", [])
|
| 121 |
+
|
| 122 |
+
# Limit to recent messages
|
| 123 |
+
if limit:
|
| 124 |
+
messages = messages[-limit:]
|
| 125 |
+
else:
|
| 126 |
+
messages = messages[-self.max_history:]
|
| 127 |
+
|
| 128 |
+
# Format for LLM
|
| 129 |
+
if include_metadata:
|
| 130 |
+
return messages
|
| 131 |
+
else:
|
| 132 |
+
return [
|
| 133 |
+
{
|
| 134 |
+
"role": msg["role"],
|
| 135 |
+
"content": msg["content"]
|
| 136 |
+
}
|
| 137 |
+
for msg in messages
|
| 138 |
+
]
|
| 139 |
+
|
| 140 |
+
def get_session_info(self, session_id: str) -> Optional[Dict]:
|
| 141 |
+
"""
|
| 142 |
+
Get session metadata
|
| 143 |
+
|
| 144 |
+
Returns:
|
| 145 |
+
Session info hoặc None nếu không tồn tại
|
| 146 |
+
"""
|
| 147 |
+
session = self.collection.find_one(
|
| 148 |
+
{"session_id": session_id},
|
| 149 |
+
{"_id": 0, "session_id": 1, "created_at": 1, "updated_at": 1, "metadata": 1}
|
| 150 |
+
)
|
| 151 |
+
return session
|
| 152 |
+
|
| 153 |
+
def clear_session(self, session_id: str) -> bool:
|
| 154 |
+
"""
|
| 155 |
+
Clear conversation history for session
|
| 156 |
+
|
| 157 |
+
Returns:
|
| 158 |
+
True nếu xóa thành công, False nếu session không tồn tại
|
| 159 |
+
"""
|
| 160 |
+
result = self.collection.delete_one({"session_id": session_id})
|
| 161 |
+
return result.deleted_count > 0
|
| 162 |
+
|
| 163 |
+
def session_exists(self, session_id: str) -> bool:
|
| 164 |
+
"""
|
| 165 |
+
Check if session exists
|
| 166 |
+
"""
|
| 167 |
+
return self.collection.count_documents({"session_id": session_id}) > 0
|
| 168 |
+
|
| 169 |
+
def get_last_user_message(self, session_id: str) -> Optional[str]:
|
| 170 |
+
"""
|
| 171 |
+
Get the last user message in conversation
|
| 172 |
+
Useful for context extraction
|
| 173 |
+
"""
|
| 174 |
+
session = self.collection.find_one({"session_id": session_id})
|
| 175 |
+
if not session:
|
| 176 |
+
return None
|
| 177 |
+
|
| 178 |
+
messages = session.get("messages", [])
|
| 179 |
+
# Tìm message cuối cùng từ user
|
| 180 |
+
for msg in reversed(messages):
|
| 181 |
+
if msg["role"] == "user":
|
| 182 |
+
return msg["content"]
|
| 183 |
+
|
| 184 |
+
return None
|
main.py
CHANGED
|
@@ -17,6 +17,8 @@ from advanced_rag import AdvancedRAG
|
|
| 17 |
from cag_service import CAGService
|
| 18 |
from pdf_parser import PDFIndexer
|
| 19 |
from multimodal_pdf_parser import MultimodalPDFIndexer
|
|
|
|
|
|
|
| 20 |
|
| 21 |
# Initialize FastAPI app
|
| 22 |
app = FastAPI(
|
|
@@ -96,6 +98,15 @@ multimodal_pdf_indexer = MultimodalPDFIndexer(
|
|
| 96 |
)
|
| 97 |
print("✓ Multimodal PDF Indexer initialized")
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
print("✓ Services initialized successfully")
|
| 100 |
|
| 101 |
|
|
@@ -123,6 +134,7 @@ class IndexResponse(BaseModel):
|
|
| 123 |
# Pydantic models for ChatbotRAG
|
| 124 |
class ChatRequest(BaseModel):
|
| 125 |
message: str
|
|
|
|
| 126 |
use_rag: bool = True
|
| 127 |
top_k: int = 3
|
| 128 |
system_message: Optional[str] = """Bạn là trợ lý AI chuyên biệt cho hệ thống quản lý sự kiện và bán vé.
|
|
@@ -143,6 +155,8 @@ Quy tắc tuyệt đối:
|
|
| 143 |
use_reranking: bool = False # Disabled - Cross-Encoder not good for Vietnamese
|
| 144 |
use_compression: bool = True
|
| 145 |
score_threshold: float = 0.5
|
|
|
|
|
|
|
| 146 |
|
| 147 |
|
| 148 |
class ChatResponse(BaseModel):
|
|
@@ -150,6 +164,8 @@ class ChatResponse(BaseModel):
|
|
| 150 |
context_used: List[Dict]
|
| 151 |
timestamp: str
|
| 152 |
rag_stats: Optional[Dict] = None # Stats from advanced RAG pipeline
|
|
|
|
|
|
|
| 153 |
|
| 154 |
|
| 155 |
class AddDocumentRequest(BaseModel):
|
|
@@ -748,7 +764,16 @@ async def chat(request: ChatRequest):
|
|
| 748 |
)
|
| 749 |
else:
|
| 750 |
# Basic prompt
|
| 751 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 752 |
else:
|
| 753 |
system_message = request.system_message
|
| 754 |
|
|
|
|
| 17 |
from cag_service import CAGService
|
| 18 |
from pdf_parser import PDFIndexer
|
| 19 |
from multimodal_pdf_parser import MultimodalPDFIndexer
|
| 20 |
+
from conversation_service import ConversationService
|
| 21 |
+
from tools_service import ToolsService
|
| 22 |
|
| 23 |
# Initialize FastAPI app
|
| 24 |
app = FastAPI(
|
|
|
|
| 98 |
)
|
| 99 |
print("✓ Multimodal PDF Indexer initialized")
|
| 100 |
|
| 101 |
+
# Initialize Conversation Service
|
| 102 |
+
conversations_collection = db["conversations"]
|
| 103 |
+
conversation_service = ConversationService(conversations_collection, max_history=10)
|
| 104 |
+
print("✓ Conversation Service initialized")
|
| 105 |
+
|
| 106 |
+
# Initialize Tools Service
|
| 107 |
+
tools_service = ToolsService(base_url="https://www.festavenue.site")
|
| 108 |
+
print("✓ Tools Service initialized (Function Calling enabled)")
|
| 109 |
+
|
| 110 |
print("✓ Services initialized successfully")
|
| 111 |
|
| 112 |
|
|
|
|
| 134 |
# Pydantic models for ChatbotRAG
|
| 135 |
class ChatRequest(BaseModel):
|
| 136 |
message: str
|
| 137 |
+
session_id: Optional[str] = None # Multi-turn conversation
|
| 138 |
use_rag: bool = True
|
| 139 |
top_k: int = 3
|
| 140 |
system_message: Optional[str] = """Bạn là trợ lý AI chuyên biệt cho hệ thống quản lý sự kiện và bán vé.
|
|
|
|
| 155 |
use_reranking: bool = False # Disabled - Cross-Encoder not good for Vietnamese
|
| 156 |
use_compression: bool = True
|
| 157 |
score_threshold: float = 0.5
|
| 158 |
+
# Function calling
|
| 159 |
+
enable_tools: bool = True # Enable API tool calling
|
| 160 |
|
| 161 |
|
| 162 |
class ChatResponse(BaseModel):
|
|
|
|
| 164 |
context_used: List[Dict]
|
| 165 |
timestamp: str
|
| 166 |
rag_stats: Optional[Dict] = None # Stats from advanced RAG pipeline
|
| 167 |
+
session_id: str # NEW: Session identifier for multi-turn
|
| 168 |
+
tool_calls: Optional[List[Dict]] = None # NEW: Track API calls made
|
| 169 |
|
| 170 |
|
| 171 |
class AddDocumentRequest(BaseModel):
|
|
|
|
| 764 |
)
|
| 765 |
else:
|
| 766 |
# Basic prompt
|
| 767 |
+
# Basic prompt with better instructions
|
| 768 |
+
system_message = f"""{request.system_message}
|
| 769 |
+
|
| 770 |
+
{context_text}
|
| 771 |
+
|
| 772 |
+
HƯỚNG DẪN:
|
| 773 |
+
- Sử dụng thông tin từ context trên để trả lời câu hỏi.
|
| 774 |
+
- Trả lời tự nhiên, thân thiện, không copy nguyên văn.
|
| 775 |
+
- Nếu tìm thấy sự kiện, hãy tóm tắt các thông tin quan trọng nhất.
|
| 776 |
+
"""
|
| 777 |
else:
|
| 778 |
system_message = request.system_message
|
| 779 |
|
tools_service.py
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Tools Service for LLM Function Calling
|
| 3 |
+
HuggingFace-compatible với prompt engineering
|
| 4 |
+
"""
|
| 5 |
+
import httpx
|
| 6 |
+
from typing import List, Dict, Any, Optional
|
| 7 |
+
import json
|
| 8 |
+
import asyncio
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class ToolsService:
|
| 12 |
+
"""
|
| 13 |
+
Manages external API tools that LLM can call via prompt engineering
|
| 14 |
+
"""
|
| 15 |
+
|
| 16 |
+
def __init__(self, base_url: str = "https://www.festavenue.site"):
|
| 17 |
+
self.base_url = base_url
|
| 18 |
+
self.client = httpx.AsyncClient(timeout=10.0)
|
| 19 |
+
|
| 20 |
+
def get_tools_prompt(self) -> str:
|
| 21 |
+
"""
|
| 22 |
+
Return prompt instruction for HuggingFace LLM về available tools
|
| 23 |
+
"""
|
| 24 |
+
return """
|
| 25 |
+
AVAILABLE TOOLS:
|
| 26 |
+
Bạn có thể sử dụng các công cụ sau để lấy thông tin chi tiết:
|
| 27 |
+
|
| 28 |
+
1. get_event_details(event_code: str)
|
| 29 |
+
- Mô tả: Lấy thông tin đầy đủ về một sự kiện từ hệ thống
|
| 30 |
+
- Khi nào dùng: Khi user hỏi về ngày giờ chính xác, địa điểm cụ thể, thông tin liên hệ, hoặc chi tiết khác về một sự kiện
|
| 31 |
+
- Tham số: event_code (mã sự kiện, ví dụ: "Y-CONCERT", "EVT001")
|
| 32 |
+
- Ví dụ: User hỏi "Ngày tổ chức Y-CONCERT là khi nào?" → Dùng get_event_details("Y-CONCERT")
|
| 33 |
+
|
| 34 |
+
CÚ PHÁP GỌI TOOL:
|
| 35 |
+
Khi bạn cần gọi tool, hãy trả lời CHÍNH XÁC theo format JSON này:
|
| 36 |
+
```json
|
| 37 |
+
{
|
| 38 |
+
"tool_call": true,
|
| 39 |
+
"function_name": "get_event_details",
|
| 40 |
+
"arguments": {
|
| 41 |
+
"event_code": "Y-CONCERT"
|
| 42 |
+
},
|
| 43 |
+
"reason": "Cần lấy thông tin chính xác về ngày giờ tổ chức"
|
| 44 |
+
}
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
QUAN TRỌNG:
|
| 48 |
+
- CHỈ trả JSON khi BẮT BUỘC cần gọi tool
|
| 49 |
+
- Nếu có thể trả lời từ context sẵn có, đừng gọi tool
|
| 50 |
+
- Sau khi nhận kết quả từ tool, hãy trả lời user bằng ngôn ngữ tự nhiên
|
| 51 |
+
"""
|
| 52 |
+
|
| 53 |
+
async def parse_and_execute(self, llm_response: str) -> Optional[Dict[str, Any]]:
|
| 54 |
+
"""
|
| 55 |
+
Parse LLM response và execute tool nếu có
|
| 56 |
+
|
| 57 |
+
Returns:
|
| 58 |
+
None nếu không có tool call
|
| 59 |
+
Dict với tool result nếu có tool call
|
| 60 |
+
"""
|
| 61 |
+
# Try to extract JSON from response
|
| 62 |
+
try:
|
| 63 |
+
# Tìm JSON block trong response
|
| 64 |
+
if "```json" in llm_response:
|
| 65 |
+
json_start = llm_response.find("```json") + 7
|
| 66 |
+
json_end = llm_response.find("```", json_start)
|
| 67 |
+
json_str = llm_response[json_start:json_end].strip()
|
| 68 |
+
elif "{" in llm_response and "}" in llm_response:
|
| 69 |
+
# Fallback: tìm JSON object đầu tiên
|
| 70 |
+
json_start = llm_response.find("{")
|
| 71 |
+
json_end = llm_response.rfind("}") + 1
|
| 72 |
+
json_str = llm_response[json_start:json_end]
|
| 73 |
+
else:
|
| 74 |
+
return None
|
| 75 |
+
|
| 76 |
+
tool_call = json.loads(json_str)
|
| 77 |
+
|
| 78 |
+
# Validate tool call structure
|
| 79 |
+
if not tool_call.get("tool_call"):
|
| 80 |
+
return None
|
| 81 |
+
|
| 82 |
+
function_name = tool_call.get("function_name")
|
| 83 |
+
arguments = tool_call.get("arguments", {})
|
| 84 |
+
|
| 85 |
+
# Execute tool
|
| 86 |
+
if function_name == "get_event_details":
|
| 87 |
+
result = await self._get_event_details(arguments.get("event_code"))
|
| 88 |
+
return {
|
| 89 |
+
"function": function_name,
|
| 90 |
+
"arguments": arguments,
|
| 91 |
+
"result": result
|
| 92 |
+
}
|
| 93 |
+
else:
|
| 94 |
+
return {
|
| 95 |
+
"function": function_name,
|
| 96 |
+
"arguments": arguments,
|
| 97 |
+
"result": {"success": False, "error": f"Unknown function: {function_name}"}
|
| 98 |
+
}
|
| 99 |
+
|
| 100 |
+
except (json.JSONDecodeError, KeyError, ValueError) as e:
|
| 101 |
+
# Không phải tool call, response bình thường
|
| 102 |
+
return None
|
| 103 |
+
|
| 104 |
+
async def _get_event_details(self, event_code: str) -> Dict[str, Any]:
|
| 105 |
+
"""
|
| 106 |
+
Call getEventByEventCode API
|
| 107 |
+
"""
|
| 108 |
+
try:
|
| 109 |
+
response = await self.client.get(
|
| 110 |
+
f"{self.base_url}/event/get-event-by-event-code",
|
| 111 |
+
params={"eventCode": event_code}
|
| 112 |
+
)
|
| 113 |
+
response.raise_for_status()
|
| 114 |
+
data = response.json()
|
| 115 |
+
|
| 116 |
+
# Extract relevant fields
|
| 117 |
+
event = data.get("data", {})
|
| 118 |
+
|
| 119 |
+
if not event:
|
| 120 |
+
return {
|
| 121 |
+
"success": False,
|
| 122 |
+
"error": "Event not found",
|
| 123 |
+
"message": f"Không tìm thấy sự kiện với mã {event_code}"
|
| 124 |
+
}
|
| 125 |
+
|
| 126 |
+
return {
|
| 127 |
+
"success": True,
|
| 128 |
+
"event_code": event.get("eventCode"),
|
| 129 |
+
"event_name": event.get("eventName"),
|
| 130 |
+
"description": event.get("description"),
|
| 131 |
+
"short_description": event.get("shortDescription"),
|
| 132 |
+
"start_time": event.get("startTimeEventTime"),
|
| 133 |
+
"end_time": event.get("endTimeEventTime"),
|
| 134 |
+
"start_sale": event.get("startTicketSaleTime"),
|
| 135 |
+
"end_sale": event.get("endTicketSaleTime"),
|
| 136 |
+
"location": {
|
| 137 |
+
"address": event.get("location", {}).get("address"),
|
| 138 |
+
"city": event.get("location", {}).get("city"),
|
| 139 |
+
},
|
| 140 |
+
"contact": {
|
| 141 |
+
"email": event.get("publicContactEmail"),
|
| 142 |
+
"phone": event.get("publicContactPhone"),
|
| 143 |
+
"website": event.get("website")
|
| 144 |
+
},
|
| 145 |
+
"capacity": event.get("capacity"),
|
| 146 |
+
"hashtags": event.get("hashtags", [])
|
| 147 |
+
}
|
| 148 |
+
|
| 149 |
+
except httpx.HTTPStatusError as e:
|
| 150 |
+
return {
|
| 151 |
+
"success": False,
|
| 152 |
+
"error": f"HTTP {e.response.status_code}",
|
| 153 |
+
"message": f"API trả về lỗi khi truy vấn sự kiện {event_code}"
|
| 154 |
+
}
|
| 155 |
+
except Exception as e:
|
| 156 |
+
return {
|
| 157 |
+
"success": False,
|
| 158 |
+
"error": str(e),
|
| 159 |
+
"message": "Không thể kết nối đến API để lấy thông tin sự kiện"
|
| 160 |
+
}
|
| 161 |
+
|
| 162 |
+
async def close(self):
|
| 163 |
+
"""Close HTTP client"""
|
| 164 |
+
await self.client.aclose()
|