Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,47 +1,942 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import os
|
| 5 |
-
|
| 6 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
"""
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
"""
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
- ✅ Tiếng Việt: 100% support
|
| 22 |
-
- ✅ High Performance: ONNX + HNSW
|
| 23 |
-
- ✅ Cloud: Qdrant Cloud
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
| 34 |
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
# Wrap FastAPI với Gradio
|
| 43 |
-
app = gr.mount_gradio_app(fastapi_app, demo, path="/")
|
| 44 |
|
| 45 |
if __name__ == "__main__":
|
| 46 |
import uvicorn
|
| 47 |
-
uvicorn.run(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
|
| 2 |
+
from fastapi.responses import JSONResponse
|
| 3 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 4 |
+
from pydantic import BaseModel
|
| 5 |
+
from typing import Optional, List, Dict
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import io
|
| 8 |
+
import numpy as np
|
| 9 |
import os
|
| 10 |
+
from datetime import datetime
|
| 11 |
+
from pymongo import MongoClient
|
| 12 |
+
from huggingface_hub import InferenceClient
|
| 13 |
+
|
| 14 |
+
from embedding_service import JinaClipEmbeddingService
|
| 15 |
+
from qdrant_service import QdrantVectorService
|
| 16 |
+
from advanced_rag import AdvancedRAG
|
| 17 |
+
from cag_service import CAGService
|
| 18 |
+
from pdf_parser import PDFIndexer
|
| 19 |
+
from multimodal_pdf_parser import MultimodalPDFIndexer
|
| 20 |
+
|
| 21 |
+
# Initialize FastAPI app
|
| 22 |
+
app = FastAPI(
|
| 23 |
+
title="Event Social Media Embeddings & ChatbotRAG API",
|
| 24 |
+
description="API để embeddings, search và ChatbotRAG với Jina CLIP v2 + Qdrant + MongoDB + LLM",
|
| 25 |
+
version="2.0.0"
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
# CORS middleware
|
| 29 |
+
app.add_middleware(
|
| 30 |
+
CORSMiddleware,
|
| 31 |
+
allow_origins=["*"],
|
| 32 |
+
allow_credentials=True,
|
| 33 |
+
allow_methods=["*"],
|
| 34 |
+
allow_headers=["*"],
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
# Initialize services
|
| 38 |
+
print("Initializing services...")
|
| 39 |
+
embedding_service = JinaClipEmbeddingService(model_path="jinaai/jina-clip-v2")
|
| 40 |
+
|
| 41 |
+
collection_name = os.getenv("COLLECTION_NAME", "event_social_media")
|
| 42 |
+
qdrant_service = QdrantVectorService(
|
| 43 |
+
collection_name=collection_name,
|
| 44 |
+
vector_size=embedding_service.get_embedding_dimension()
|
| 45 |
+
)
|
| 46 |
+
print(f"✓ Qdrant collection: {collection_name}")
|
| 47 |
+
|
| 48 |
+
# MongoDB connection
|
| 49 |
+
mongodb_uri = os.getenv("MONGODB_URI", "mongodb+srv://truongtn7122003:7KaI9OT5KTUxWjVI@truongtn7122003.xogin4q.mongodb.net/")
|
| 50 |
+
mongo_client = MongoClient(mongodb_uri)
|
| 51 |
+
db = mongo_client[os.getenv("MONGODB_DB_NAME", "chatbot_rag")]
|
| 52 |
+
documents_collection = db["documents"]
|
| 53 |
+
chat_history_collection = db["chat_history"]
|
| 54 |
+
print("✓ MongoDB connected")
|
| 55 |
+
|
| 56 |
+
# Hugging Face token
|
| 57 |
+
hf_token = os.getenv("HUGGINGFACE_TOKEN")
|
| 58 |
+
if hf_token:
|
| 59 |
+
print("✓ Hugging Face token configured")
|
| 60 |
+
|
| 61 |
+
# Initialize Advanced RAG (Best Case 2025)
|
| 62 |
+
advanced_rag = AdvancedRAG(
|
| 63 |
+
embedding_service=embedding_service,
|
| 64 |
+
qdrant_service=qdrant_service
|
| 65 |
+
)
|
| 66 |
+
print("✓ Advanced RAG pipeline initialized (with Cross-Encoder)")
|
| 67 |
+
|
| 68 |
+
# Initialize CAG Service (Semantic Cache)
|
| 69 |
+
try:
|
| 70 |
+
cag_service = CAGService(
|
| 71 |
+
embedding_service=embedding_service,
|
| 72 |
+
cache_collection="semantic_cache",
|
| 73 |
+
vector_size=embedding_service.get_embedding_dimension(),
|
| 74 |
+
similarity_threshold=0.9,
|
| 75 |
+
ttl_hours=24
|
| 76 |
+
)
|
| 77 |
+
print("✓ CAG Service initialized (Semantic Caching enabled)")
|
| 78 |
+
except Exception as e:
|
| 79 |
+
print(f"Warning: CAG Service initialization failed: {e}")
|
| 80 |
+
print("Continuing without semantic caching...")
|
| 81 |
+
cag_service = None
|
| 82 |
+
|
| 83 |
+
# Initialize PDF Indexer
|
| 84 |
+
pdf_indexer = PDFIndexer(
|
| 85 |
+
embedding_service=embedding_service,
|
| 86 |
+
qdrant_service=qdrant_service,
|
| 87 |
+
documents_collection=documents_collection
|
| 88 |
+
)
|
| 89 |
+
print("✓ PDF Indexer initialized")
|
| 90 |
+
|
| 91 |
+
# Initialize Multimodal PDF Indexer
|
| 92 |
+
multimodal_pdf_indexer = MultimodalPDFIndexer(
|
| 93 |
+
embedding_service=embedding_service,
|
| 94 |
+
qdrant_service=qdrant_service,
|
| 95 |
+
documents_collection=documents_collection
|
| 96 |
+
)
|
| 97 |
+
print("✓ Multimodal PDF Indexer initialized")
|
| 98 |
+
|
| 99 |
+
print("✓ Services initialized successfully")
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
# Pydantic models for embeddings
|
| 103 |
+
class SearchRequest(BaseModel):
|
| 104 |
+
text: Optional[str] = None
|
| 105 |
+
limit: int = 10
|
| 106 |
+
score_threshold: Optional[float] = None
|
| 107 |
+
text_weight: float = 0.5
|
| 108 |
+
image_weight: float = 0.5
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
class SearchResponse(BaseModel):
|
| 112 |
+
id: str
|
| 113 |
+
confidence: float
|
| 114 |
+
metadata: dict
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
class IndexResponse(BaseModel):
|
| 118 |
+
success: bool
|
| 119 |
+
id: str
|
| 120 |
+
message: str
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
# Pydantic models for ChatbotRAG
|
| 124 |
+
class ChatRequest(BaseModel):
|
| 125 |
+
message: str
|
| 126 |
+
use_rag: bool = True
|
| 127 |
+
top_k: int = 3
|
| 128 |
+
system_message: Optional[str] = """Bạn là trợ lý AI chuyên biệt cho hệ thống quản lý sự kiện và mạng xã hội.
|
| 129 |
+
Vai trò của bạn là trả lời các câu hỏi CHÍNH XÁC dựa trên dữ liệu được cung cấp từ hệ thống.
|
| 130 |
+
|
| 131 |
+
Quy tắc tuyệt đối:
|
| 132 |
+
- CHỈ trả lời câu hỏi liên quan đến: events, social media posts, PDFs đã upload, và dữ liệu trong knowledge base
|
| 133 |
+
- KHÔNG trả lời câu hỏi ngoài phạm vi (tin tức, thời tiết, toán học, lập trình, tư vấn cá nhân, v.v.)
|
| 134 |
+
- Nếu câu hỏi nằm ngoài phạm vi: BẮT BUỘC trả lời "Chúng tôi không thể trả lời câu hỏi này vì nó nằm ngoài vùng application xử lí."
|
| 135 |
+
- Luôn ưu tiên thông tin từ context được cung cấp"""
|
| 136 |
+
max_tokens: int = 512
|
| 137 |
+
temperature: float = 0.7
|
| 138 |
+
top_p: float = 0.95
|
| 139 |
+
hf_token: Optional[str] = None
|
| 140 |
+
# Advanced RAG options
|
| 141 |
+
use_advanced_rag: bool = True
|
| 142 |
+
use_query_expansion: bool = True
|
| 143 |
+
use_reranking: bool = True
|
| 144 |
+
use_compression: bool = True
|
| 145 |
+
score_threshold: float = 0.5
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
class ChatResponse(BaseModel):
|
| 149 |
+
response: str
|
| 150 |
+
context_used: List[Dict]
|
| 151 |
+
timestamp: str
|
| 152 |
+
rag_stats: Optional[Dict] = None # Stats from advanced RAG pipeline
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
class AddDocumentRequest(BaseModel):
|
| 156 |
+
text: str
|
| 157 |
+
metadata: Optional[Dict] = None
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
class AddDocumentResponse(BaseModel):
|
| 161 |
+
success: bool
|
| 162 |
+
doc_id: str
|
| 163 |
+
message: str
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
@app.get("/")
|
| 167 |
+
async def root():
|
| 168 |
+
"""Health check endpoint with comprehensive API documentation"""
|
| 169 |
+
return {
|
| 170 |
+
"status": "running",
|
| 171 |
+
"service": "ChatbotRAG API",
|
| 172 |
+
"version": "2.0.0",
|
| 173 |
+
"vector_db": "Qdrant",
|
| 174 |
+
"document_db": "MongoDB",
|
| 175 |
+
"endpoints": {
|
| 176 |
+
"chatbot_rag": {
|
| 177 |
+
"API endpoint": "https://minhvtt-ChatbotRAG.hf.space/",
|
| 178 |
+
"POST /chat": {
|
| 179 |
+
"description": "Chat với AI sử dụng RAG (Retrieval-Augmented Generation)",
|
| 180 |
+
"request": {
|
| 181 |
+
"method": "POST",
|
| 182 |
+
"content_type": "application/json",
|
| 183 |
+
"body": {
|
| 184 |
+
"message": "string (required) - User message/question",
|
| 185 |
+
"use_rag": "boolean (optional, default: true) - Enable RAG context retrieval",
|
| 186 |
+
"top_k": "integer (optional, default: 3) - Number of context documents to retrieve",
|
| 187 |
+
"system_message": "string (optional) - Custom system prompt",
|
| 188 |
+
"max_tokens": "integer (optional, default: 512) - Max response length",
|
| 189 |
+
"temperature": "float (optional, default: 0.7, range: 0-1) - Creativity level",
|
| 190 |
+
"top_p": "float (optional, default: 0.95) - Nucleus sampling",
|
| 191 |
+
"hf_token": "string (optional) - Hugging Face token (fallback to env)"
|
| 192 |
+
}
|
| 193 |
+
},
|
| 194 |
+
"response": {
|
| 195 |
+
"response": "string - AI generated response",
|
| 196 |
+
"context_used": [
|
| 197 |
+
{
|
| 198 |
+
"id": "string - Document ID",
|
| 199 |
+
"confidence": "float - Relevance score",
|
| 200 |
+
"metadata": {
|
| 201 |
+
"text": "string - Retrieved context"
|
| 202 |
+
}
|
| 203 |
+
}
|
| 204 |
+
],
|
| 205 |
+
"timestamp": "string - ISO 8601 timestamp"
|
| 206 |
+
},
|
| 207 |
+
"example_request": {
|
| 208 |
+
"message": "Dao có nguy hiểm không?",
|
| 209 |
+
"use_rag": True,
|
| 210 |
+
"top_k": 3,
|
| 211 |
+
"temperature": 0.7
|
| 212 |
+
},
|
| 213 |
+
"example_response": {
|
| 214 |
+
"response": "Dựa trên thông tin trong database, dao được phân loại là vũ khí nguy hiểm. Dao sắc có thể gây thương tích nghiêm trọng nếu không sử dụng đúng cách. Cần tuân thủ các quy định an toàn khi sử dụng.",
|
| 215 |
+
"context_used": [
|
| 216 |
+
{
|
| 217 |
+
"id": "68a3fc14c853d7621e8977b5",
|
| 218 |
+
"confidence": 0.92,
|
| 219 |
+
"metadata": {
|
| 220 |
+
"text": "Vũ khí"
|
| 221 |
+
}
|
| 222 |
+
},
|
| 223 |
+
{
|
| 224 |
+
"id": "68a3fc4cc853d7621e8977b6",
|
| 225 |
+
"confidence": 0.85,
|
| 226 |
+
"metadata": {
|
| 227 |
+
"text": "Con dao sắc"
|
| 228 |
+
}
|
| 229 |
+
}
|
| 230 |
+
],
|
| 231 |
+
"timestamp": "2025-10-13T10:30:45.123456"
|
| 232 |
+
},
|
| 233 |
+
"notes": [
|
| 234 |
+
"RAG retrieves relevant context from vector DB before generating response",
|
| 235 |
+
"LLM uses context to provide accurate, grounded answers",
|
| 236 |
+
"Requires HUGGINGFACE_TOKEN environment variable or hf_token in request"
|
| 237 |
+
]
|
| 238 |
+
},
|
| 239 |
+
"POST /documents": {
|
| 240 |
+
"description": "Add document to knowledge base for RAG",
|
| 241 |
+
"request": {
|
| 242 |
+
"method": "POST",
|
| 243 |
+
"content_type": "application/json",
|
| 244 |
+
"body": {
|
| 245 |
+
"text": "string (required) - Document text content",
|
| 246 |
+
"metadata": "object (optional) - Additional metadata (source, category, etc.)"
|
| 247 |
+
}
|
| 248 |
+
},
|
| 249 |
+
"response": {
|
| 250 |
+
"success": "boolean",
|
| 251 |
+
"doc_id": "string - MongoDB ObjectId",
|
| 252 |
+
"message": "string - Status message"
|
| 253 |
+
},
|
| 254 |
+
"example_request": {
|
| 255 |
+
"text": "Để tạo event mới: Click nút 'Tạo Event' ở góc trên bên phải màn hình. Điền thông tin sự kiện bao gồm tên, ngày giờ, địa điểm. Click Lưu để hoàn tất.",
|
| 256 |
+
"metadata": {
|
| 257 |
+
"source": "user_guide.pdf",
|
| 258 |
+
"section": "create_event",
|
| 259 |
+
"page": 5,
|
| 260 |
+
"category": "tutorial"
|
| 261 |
+
}
|
| 262 |
+
},
|
| 263 |
+
"example_response": {
|
| 264 |
+
"success": True,
|
| 265 |
+
"doc_id": "67a9876543210fedcba98765",
|
| 266 |
+
"message": "Document added successfully with ID: 67a9876543210fedcba98765"
|
| 267 |
+
}
|
| 268 |
+
},
|
| 269 |
+
"POST /rag/search": {
|
| 270 |
+
"description": "Search in knowledge base (similar to /search/text but for RAG documents)",
|
| 271 |
+
"request": {
|
| 272 |
+
"method": "POST",
|
| 273 |
+
"content_type": "multipart/form-data",
|
| 274 |
+
"body": {
|
| 275 |
+
"query": "string (required) - Search query",
|
| 276 |
+
"top_k": "integer (optional, default: 5) - Number of results",
|
| 277 |
+
"score_threshold": "float (optional, default: 0.5) - Minimum relevance score"
|
| 278 |
+
}
|
| 279 |
+
},
|
| 280 |
+
"response": [
|
| 281 |
+
{
|
| 282 |
+
"id": "string",
|
| 283 |
+
"confidence": "float",
|
| 284 |
+
"metadata": {
|
| 285 |
+
"text": "string",
|
| 286 |
+
"source": "string"
|
| 287 |
+
}
|
| 288 |
+
}
|
| 289 |
+
],
|
| 290 |
+
"example_request": {
|
| 291 |
+
"query": "cách tạo sự kiện mới",
|
| 292 |
+
"top_k": 3,
|
| 293 |
+
"score_threshold": 0.6
|
| 294 |
+
}
|
| 295 |
+
},
|
| 296 |
+
"GET /history": {
|
| 297 |
+
"description": "Get chat conversation history",
|
| 298 |
+
"request": {
|
| 299 |
+
"method": "GET",
|
| 300 |
+
"query_params": {
|
| 301 |
+
"limit": "integer (optional, default: 10) - Number of messages",
|
| 302 |
+
"skip": "integer (optional, default: 0) - Pagination offset"
|
| 303 |
+
}
|
| 304 |
+
},
|
| 305 |
+
"response": {
|
| 306 |
+
"history": [
|
| 307 |
+
{
|
| 308 |
+
"user_message": "string",
|
| 309 |
+
"assistant_response": "string",
|
| 310 |
+
"context_used": "array",
|
| 311 |
+
"timestamp": "string - ISO 8601"
|
| 312 |
+
}
|
| 313 |
+
],
|
| 314 |
+
"total": "integer - Total messages count"
|
| 315 |
+
},
|
| 316 |
+
"example_request": "GET /history?limit=5&skip=0",
|
| 317 |
+
"example_response": {
|
| 318 |
+
"history": [
|
| 319 |
+
{
|
| 320 |
+
"user_message": "Dao có nguy hiểm không?",
|
| 321 |
+
"assistant_response": "Dao được phân loại là vũ khí...",
|
| 322 |
+
"context_used": [],
|
| 323 |
+
"timestamp": "2025-10-13T10:30:45.123456"
|
| 324 |
+
}
|
| 325 |
+
],
|
| 326 |
+
"total": 15
|
| 327 |
+
}
|
| 328 |
+
},
|
| 329 |
+
"DELETE /documents/{doc_id}": {
|
| 330 |
+
"description": "Delete document from knowledge base",
|
| 331 |
+
"request": {
|
| 332 |
+
"method": "DELETE",
|
| 333 |
+
"path_params": {
|
| 334 |
+
"doc_id": "string - MongoDB ObjectId"
|
| 335 |
+
}
|
| 336 |
+
},
|
| 337 |
+
"response": {
|
| 338 |
+
"success": "boolean",
|
| 339 |
+
"message": "string"
|
| 340 |
+
}
|
| 341 |
+
}
|
| 342 |
+
}
|
| 343 |
+
},
|
| 344 |
+
"usage_examples": {
|
| 345 |
+
"curl_chat": "curl -X POST 'http://localhost:8000/chat' -H 'Content-Type: application/json' -d '{\"message\": \"Dao có nguy hiểm không?\", \"use_rag\": true}'",
|
| 346 |
+
"python_chat": """
|
| 347 |
+
import requests
|
| 348 |
+
|
| 349 |
+
response = requests.post(
|
| 350 |
+
'http://localhost:8000/chat',
|
| 351 |
+
json={
|
| 352 |
+
'message': 'Nút tạo event ở đâu?',
|
| 353 |
+
'use_rag': True,
|
| 354 |
+
'top_k': 3
|
| 355 |
+
}
|
| 356 |
+
)
|
| 357 |
+
print(response.json()['response'])
|
| 358 |
+
"""
|
| 359 |
+
},
|
| 360 |
+
"authentication": {
|
| 361 |
+
"embeddings_apis": "No authentication required",
|
| 362 |
+
"chat_api": "Requires HUGGINGFACE_TOKEN (env variable or request body)"
|
| 363 |
+
},
|
| 364 |
+
"rate_limits": {
|
| 365 |
+
"embeddings": "No limit",
|
| 366 |
+
"chat_with_llm": "Limited by Hugging Face API (free tier: ~1000 requests/hour)"
|
| 367 |
+
},
|
| 368 |
+
"error_codes": {
|
| 369 |
+
"400": "Bad Request - Missing required fields or invalid input",
|
| 370 |
+
"401": "Unauthorized - Invalid Hugging Face token",
|
| 371 |
+
"404": "Not Found - Document ID not found",
|
| 372 |
+
"500": "Internal Server Error - Server or database error"
|
| 373 |
+
},
|
| 374 |
+
"links": {
|
| 375 |
+
"docs": "http://localhost:8000/docs",
|
| 376 |
+
"redoc": "http://localhost:8000/redoc",
|
| 377 |
+
"openapi": "http://localhost:8000/openapi.json"
|
| 378 |
+
}
|
| 379 |
+
}
|
| 380 |
+
|
| 381 |
+
@app.post("/index", response_model=IndexResponse)
|
| 382 |
+
async def index_data(
|
| 383 |
+
id: str = Form(...),
|
| 384 |
+
text: str = Form(...),
|
| 385 |
+
image: Optional[UploadFile] = File(None)
|
| 386 |
+
):
|
| 387 |
+
"""
|
| 388 |
+
Index data vào vector database
|
| 389 |
+
|
| 390 |
+
Body:
|
| 391 |
+
- id: Document ID (event ID, post ID, etc.)
|
| 392 |
+
- text: Text content (tiếng Việt supported)
|
| 393 |
+
- image: Image file (optional)
|
| 394 |
+
|
| 395 |
+
Returns:
|
| 396 |
+
- success: True/False
|
| 397 |
+
- id: Document ID
|
| 398 |
+
- message: Status message
|
| 399 |
+
"""
|
| 400 |
+
try:
|
| 401 |
+
# Prepare embeddings
|
| 402 |
+
text_embedding = None
|
| 403 |
+
image_embedding = None
|
| 404 |
+
|
| 405 |
+
# Encode text (tiếng Việt)
|
| 406 |
+
if text and text.strip():
|
| 407 |
+
text_embedding = embedding_service.encode_text(text)
|
| 408 |
+
|
| 409 |
+
# Encode image nếu có
|
| 410 |
+
if image:
|
| 411 |
+
image_bytes = await image.read()
|
| 412 |
+
pil_image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
|
| 413 |
+
image_embedding = embedding_service.encode_image(pil_image)
|
| 414 |
+
|
| 415 |
+
# Combine embeddings
|
| 416 |
+
if text_embedding is not None and image_embedding is not None:
|
| 417 |
+
# Average của text và image embeddings
|
| 418 |
+
combined_embedding = np.mean([text_embedding, image_embedding], axis=0)
|
| 419 |
+
elif text_embedding is not None:
|
| 420 |
+
combined_embedding = text_embedding
|
| 421 |
+
elif image_embedding is not None:
|
| 422 |
+
combined_embedding = image_embedding
|
| 423 |
+
else:
|
| 424 |
+
raise HTTPException(status_code=400, detail="Phải cung cấp ít nhất text hoặc image")
|
| 425 |
+
|
| 426 |
+
# Normalize
|
| 427 |
+
combined_embedding = combined_embedding / np.linalg.norm(combined_embedding, axis=1, keepdims=True)
|
| 428 |
+
|
| 429 |
+
# Index vào Qdrant
|
| 430 |
+
metadata = {
|
| 431 |
+
"text": text,
|
| 432 |
+
"has_image": image is not None,
|
| 433 |
+
"image_filename": image.filename if image else None
|
| 434 |
+
}
|
| 435 |
+
|
| 436 |
+
result = qdrant_service.index_data(
|
| 437 |
+
doc_id=id,
|
| 438 |
+
embedding=combined_embedding,
|
| 439 |
+
metadata=metadata
|
| 440 |
+
)
|
| 441 |
+
|
| 442 |
+
return IndexResponse(
|
| 443 |
+
success=True,
|
| 444 |
+
id=result["original_id"], # Trả về MongoDB ObjectId
|
| 445 |
+
message=f"Đã index thành công document {result['original_id']} (Qdrant UUID: {result['qdrant_id']})"
|
| 446 |
+
)
|
| 447 |
+
|
| 448 |
+
except Exception as e:
|
| 449 |
+
raise HTTPException(status_code=500, detail=f"Lỗi khi index: {str(e)}")
|
| 450 |
+
|
| 451 |
+
|
| 452 |
+
@app.post("/search", response_model=List[SearchResponse])
|
| 453 |
+
async def search(
|
| 454 |
+
text: Optional[str] = Form(None),
|
| 455 |
+
image: Optional[UploadFile] = File(None),
|
| 456 |
+
limit: int = Form(10),
|
| 457 |
+
score_threshold: Optional[float] = Form(None),
|
| 458 |
+
text_weight: float = Form(0.5),
|
| 459 |
+
image_weight: float = Form(0.5)
|
| 460 |
+
):
|
| 461 |
+
"""
|
| 462 |
+
Search similar documents bằng text và/hoặc image
|
| 463 |
+
|
| 464 |
+
Body:
|
| 465 |
+
- text: Query text (tiếng Việt supported)
|
| 466 |
+
- image: Query image (optional)
|
| 467 |
+
- limit: Số lượng kết quả (default: 10)
|
| 468 |
+
- score_threshold: Minimum confidence score (0-1)
|
| 469 |
+
- text_weight: Weight cho text search (default: 0.5)
|
| 470 |
+
- image_weight: Weight cho image search (default: 0.5)
|
| 471 |
+
|
| 472 |
+
Returns:
|
| 473 |
+
- List of results với id, confidence, và metadata
|
| 474 |
+
"""
|
| 475 |
+
try:
|
| 476 |
+
# Prepare query embeddings
|
| 477 |
+
text_embedding = None
|
| 478 |
+
image_embedding = None
|
| 479 |
+
|
| 480 |
+
# Encode text query
|
| 481 |
+
if text and text.strip():
|
| 482 |
+
text_embedding = embedding_service.encode_text(text)
|
| 483 |
+
|
| 484 |
+
# Encode image query
|
| 485 |
+
if image:
|
| 486 |
+
image_bytes = await image.read()
|
| 487 |
+
pil_image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
|
| 488 |
+
image_embedding = embedding_service.encode_image(pil_image)
|
| 489 |
+
|
| 490 |
+
# Validate input
|
| 491 |
+
if text_embedding is None and image_embedding is None:
|
| 492 |
+
raise HTTPException(status_code=400, detail="Phải cung cấp ít nhất text hoặc image để search")
|
| 493 |
+
|
| 494 |
+
# Hybrid search với Qdrant
|
| 495 |
+
results = qdrant_service.hybrid_search(
|
| 496 |
+
text_embedding=text_embedding,
|
| 497 |
+
image_embedding=image_embedding,
|
| 498 |
+
text_weight=text_weight,
|
| 499 |
+
image_weight=image_weight,
|
| 500 |
+
limit=limit,
|
| 501 |
+
score_threshold=score_threshold,
|
| 502 |
+
ef=256 # High accuracy search
|
| 503 |
+
)
|
| 504 |
+
|
| 505 |
+
# Format response
|
| 506 |
+
return [
|
| 507 |
+
SearchResponse(
|
| 508 |
+
id=result["id"],
|
| 509 |
+
confidence=result["confidence"],
|
| 510 |
+
metadata=result["metadata"]
|
| 511 |
+
)
|
| 512 |
+
for result in results
|
| 513 |
+
]
|
| 514 |
+
|
| 515 |
+
except Exception as e:
|
| 516 |
+
raise HTTPException(status_code=500, detail=f"Lỗi khi search: {str(e)}")
|
| 517 |
+
|
| 518 |
+
|
| 519 |
+
@app.post("/search/text", response_model=List[SearchResponse])
|
| 520 |
+
async def search_by_text(
|
| 521 |
+
text: str = Form(...),
|
| 522 |
+
limit: int = Form(10),
|
| 523 |
+
score_threshold: Optional[float] = Form(None)
|
| 524 |
+
):
|
| 525 |
+
"""
|
| 526 |
+
Search chỉ bằng text (tiếng Việt)
|
| 527 |
+
|
| 528 |
+
Body:
|
| 529 |
+
- text: Query text (tiếng Việt)
|
| 530 |
+
- limit: Số lượng kết quả
|
| 531 |
+
- score_threshold: Minimum confidence score
|
| 532 |
+
|
| 533 |
+
Returns:
|
| 534 |
+
- List of results
|
| 535 |
+
"""
|
| 536 |
+
try:
|
| 537 |
+
# Encode text
|
| 538 |
+
text_embedding = embedding_service.encode_text(text)
|
| 539 |
+
|
| 540 |
+
# Search
|
| 541 |
+
results = qdrant_service.search(
|
| 542 |
+
query_embedding=text_embedding,
|
| 543 |
+
limit=limit,
|
| 544 |
+
score_threshold=score_threshold,
|
| 545 |
+
ef=256
|
| 546 |
+
)
|
| 547 |
+
|
| 548 |
+
return [
|
| 549 |
+
SearchResponse(
|
| 550 |
+
id=result["id"],
|
| 551 |
+
confidence=result["confidence"],
|
| 552 |
+
metadata=result["metadata"]
|
| 553 |
+
)
|
| 554 |
+
for result in results
|
| 555 |
+
]
|
| 556 |
+
|
| 557 |
+
except Exception as e:
|
| 558 |
+
raise HTTPException(status_code=500, detail=f"Lỗi khi search: {str(e)}")
|
| 559 |
+
|
| 560 |
+
|
| 561 |
+
@app.post("/search/image", response_model=List[SearchResponse])
|
| 562 |
+
async def search_by_image(
|
| 563 |
+
image: UploadFile = File(...),
|
| 564 |
+
limit: int = Form(10),
|
| 565 |
+
score_threshold: Optional[float] = Form(None)
|
| 566 |
+
):
|
| 567 |
+
"""
|
| 568 |
+
Search chỉ bằng image
|
| 569 |
|
| 570 |
+
Body:
|
| 571 |
+
- image: Query image
|
| 572 |
+
- limit: Số lượng kết quả
|
| 573 |
+
- score_threshold: Minimum confidence score
|
| 574 |
+
|
| 575 |
+
Returns:
|
| 576 |
+
- List of results
|
| 577 |
+
"""
|
| 578 |
+
try:
|
| 579 |
+
# Encode image
|
| 580 |
+
image_bytes = await image.read()
|
| 581 |
+
pil_image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
|
| 582 |
+
image_embedding = embedding_service.encode_image(pil_image)
|
| 583 |
+
|
| 584 |
+
# Search
|
| 585 |
+
results = qdrant_service.search(
|
| 586 |
+
query_embedding=image_embedding,
|
| 587 |
+
limit=limit,
|
| 588 |
+
score_threshold=score_threshold,
|
| 589 |
+
ef=256
|
| 590 |
+
)
|
| 591 |
+
|
| 592 |
+
return [
|
| 593 |
+
SearchResponse(
|
| 594 |
+
id=result["id"],
|
| 595 |
+
confidence=result["confidence"],
|
| 596 |
+
metadata=result["metadata"]
|
| 597 |
+
)
|
| 598 |
+
for result in results
|
| 599 |
+
]
|
| 600 |
+
|
| 601 |
+
except Exception as e:
|
| 602 |
+
raise HTTPException(status_code=500, detail=f"Lỗi khi search: {str(e)}")
|
| 603 |
+
|
| 604 |
+
|
| 605 |
+
@app.delete("/delete/{doc_id}")
|
| 606 |
+
async def delete_document(doc_id: str):
|
| 607 |
+
"""
|
| 608 |
+
Delete document by ID (MongoDB ObjectId hoặc UUID)
|
| 609 |
+
|
| 610 |
+
Args:
|
| 611 |
+
- doc_id: Document ID to delete
|
| 612 |
+
|
| 613 |
+
Returns:
|
| 614 |
+
- Success message
|
| 615 |
"""
|
| 616 |
+
try:
|
| 617 |
+
qdrant_service.delete_by_id(doc_id)
|
| 618 |
+
return {"success": True, "message": f"Đã xóa document {doc_id}"}
|
| 619 |
+
except Exception as e:
|
| 620 |
+
raise HTTPException(status_code=500, detail=f"Lỗi khi xóa: {str(e)}")
|
| 621 |
+
|
| 622 |
+
|
| 623 |
+
@app.get("/document/{doc_id}")
|
| 624 |
+
async def get_document(doc_id: str):
|
| 625 |
+
"""
|
| 626 |
+
Get document by ID (MongoDB ObjectId hoặc UUID)
|
| 627 |
+
|
| 628 |
+
Args:
|
| 629 |
+
- doc_id: Document ID (MongoDB ObjectId)
|
| 630 |
+
|
| 631 |
+
Returns:
|
| 632 |
+
- Document data
|
| 633 |
+
"""
|
| 634 |
+
try:
|
| 635 |
+
doc = qdrant_service.get_by_id(doc_id)
|
| 636 |
+
if doc:
|
| 637 |
+
return {
|
| 638 |
+
"success": True,
|
| 639 |
+
"data": doc
|
| 640 |
+
}
|
| 641 |
+
raise HTTPException(status_code=404, detail=f"Không tìm thấy document {doc_id}")
|
| 642 |
+
except HTTPException:
|
| 643 |
+
raise
|
| 644 |
+
except Exception as e:
|
| 645 |
+
raise HTTPException(status_code=500, detail=f"Lỗi khi get document: {str(e)}")
|
| 646 |
+
|
| 647 |
+
|
| 648 |
+
@app.get("/stats")
|
| 649 |
+
async def get_stats():
|
| 650 |
"""
|
| 651 |
+
Lấy thông tin thống kê collection
|
| 652 |
+
|
| 653 |
+
Returns:
|
| 654 |
+
- Collection statistics
|
| 655 |
+
"""
|
| 656 |
+
try:
|
| 657 |
+
info = qdrant_service.get_collection_info()
|
| 658 |
+
return info
|
| 659 |
+
except Exception as e:
|
| 660 |
+
raise HTTPException(status_code=500, detail=f"Lỗi khi lấy stats: {str(e)}")
|
| 661 |
+
|
| 662 |
+
|
| 663 |
+
# ============================================
|
| 664 |
+
# ChatbotRAG Endpoints
|
| 665 |
+
# ============================================
|
| 666 |
+
|
| 667 |
+
@app.post("/chat", response_model=ChatResponse)
|
| 668 |
+
async def chat(request: ChatRequest):
|
| 669 |
+
"""
|
| 670 |
+
Chat endpoint với RAG
|
| 671 |
+
|
| 672 |
+
Body:
|
| 673 |
+
- message: User message
|
| 674 |
+
- use_rag: Enable RAG retrieval (default: true)
|
| 675 |
+
- top_k: Number of documents to retrieve (default: 3)
|
| 676 |
+
- system_message: System prompt (optional)
|
| 677 |
+
- max_tokens: Max tokens for response (default: 512)
|
| 678 |
+
- temperature: Temperature for generation (default: 0.7)
|
| 679 |
+
- hf_token: Hugging Face token (optional, sẽ dùng env nếu không truyền)
|
| 680 |
+
|
| 681 |
+
Returns:
|
| 682 |
+
- response: Generated response
|
| 683 |
+
- context_used: Retrieved context documents
|
| 684 |
+
- timestamp: Response timestamp
|
| 685 |
+
"""
|
| 686 |
+
try:
|
| 687 |
+
# Retrieve context if RAG enabled
|
| 688 |
+
context_used = []
|
| 689 |
+
if request.use_rag:
|
| 690 |
+
# Generate query embedding
|
| 691 |
+
query_embedding = embedding_service.encode_text(request.message)
|
| 692 |
+
|
| 693 |
+
# Search in Qdrant
|
| 694 |
+
results = qdrant_service.search(
|
| 695 |
+
query_embedding=query_embedding,
|
| 696 |
+
limit=request.top_k,
|
| 697 |
+
score_threshold=0.5
|
| 698 |
+
)
|
| 699 |
+
context_used = results
|
| 700 |
+
|
| 701 |
+
# Build context text
|
| 702 |
+
context_text = ""
|
| 703 |
+
if context_used:
|
| 704 |
+
context_text = "\n\nRelevant Context:\n"
|
| 705 |
+
for i, doc in enumerate(context_used, 1):
|
| 706 |
+
doc_text = doc["metadata"].get("text", "")
|
| 707 |
+
confidence = doc["confidence"]
|
| 708 |
+
context_text += f"\n[{i}] (Confidence: {confidence:.2f})\n{doc_text}\n"
|
| 709 |
+
|
| 710 |
+
# Add context to system message
|
| 711 |
+
system_message = f"{request.system_message}\n{context_text}\n\nPlease use the above context to answer the user's question when relevant."
|
| 712 |
+
else:
|
| 713 |
+
system_message = request.system_message
|
| 714 |
+
|
| 715 |
+
# Use token from request or fallback to env
|
| 716 |
+
token = request.hf_token or hf_token
|
| 717 |
+
# Generate response
|
| 718 |
+
if not token:
|
| 719 |
+
response = f"""[LLM Response Placeholder]
|
| 720 |
+
|
| 721 |
+
Context retrieved: {len(context_used)} documents
|
| 722 |
+
User question: {request.message}
|
| 723 |
+
|
| 724 |
+
To enable actual LLM generation:
|
| 725 |
+
1. Set HUGGINGFACE_TOKEN environment variable, OR
|
| 726 |
+
2. Pass hf_token in request body
|
| 727 |
+
|
| 728 |
+
Example:
|
| 729 |
+
{{
|
| 730 |
+
"message": "Your question",
|
| 731 |
+
"hf_token": "hf_xxxxxxxxxxxxx"
|
| 732 |
+
}}
|
| 733 |
+
"""
|
| 734 |
+
else:
|
| 735 |
+
try:
|
| 736 |
+
client = InferenceClient(
|
| 737 |
+
token=hf_token,
|
| 738 |
+
model="openai/gpt-oss-20b"
|
| 739 |
+
)
|
| 740 |
+
|
| 741 |
+
# Build messages
|
| 742 |
+
messages = [
|
| 743 |
+
{"role": "system", "content": system_message},
|
| 744 |
+
{"role": "user", "content": request.message}
|
| 745 |
+
]
|
| 746 |
|
| 747 |
+
# Generate response
|
| 748 |
+
response = ""
|
| 749 |
+
for msg in client.chat_completion(
|
| 750 |
+
messages,
|
| 751 |
+
max_tokens=request.max_tokens,
|
| 752 |
+
stream=True,
|
| 753 |
+
temperature=request.temperature,
|
| 754 |
+
top_p=request.top_p,
|
| 755 |
+
):
|
| 756 |
+
choices = msg.choices
|
| 757 |
+
if len(choices) and choices[0].delta.content:
|
| 758 |
+
response += choices[0].delta.content
|
| 759 |
|
| 760 |
+
except Exception as e:
|
| 761 |
+
response = f"Error generating response with LLM: {str(e)}\n\nContext was retrieved successfully, but LLM generation failed."
|
|
|
|
|
|
|
|
|
|
| 762 |
|
| 763 |
+
# Save to history
|
| 764 |
+
chat_data = {
|
| 765 |
+
"user_message": request.message,
|
| 766 |
+
"assistant_response": response,
|
| 767 |
+
"context_used": context_used,
|
| 768 |
+
"timestamp": datetime.utcnow()
|
| 769 |
+
}
|
| 770 |
+
chat_history_collection.insert_one(chat_data)
|
| 771 |
|
| 772 |
+
return ChatResponse(
|
| 773 |
+
response=response,
|
| 774 |
+
context_used=context_used,
|
| 775 |
+
timestamp=datetime.utcnow().isoformat()
|
| 776 |
+
)
|
| 777 |
|
| 778 |
+
except Exception as e:
|
| 779 |
+
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
|
| 780 |
+
|
| 781 |
+
|
| 782 |
+
@app.post("/documents", response_model=AddDocumentResponse)
|
| 783 |
+
async def add_document(request: AddDocumentRequest):
|
| 784 |
+
"""
|
| 785 |
+
Add document to knowledge base
|
| 786 |
+
|
| 787 |
+
Body:
|
| 788 |
+
- text: Document text
|
| 789 |
+
- metadata: Additional metadata (optional)
|
| 790 |
+
|
| 791 |
+
Returns:
|
| 792 |
+
- success: True/False
|
| 793 |
+
- doc_id: MongoDB document ID
|
| 794 |
+
- message: Status message
|
| 795 |
+
"""
|
| 796 |
+
try:
|
| 797 |
+
# Save to MongoDB
|
| 798 |
+
doc_data = {
|
| 799 |
+
"text": request.text,
|
| 800 |
+
"metadata": request.metadata or {},
|
| 801 |
+
"created_at": datetime.utcnow()
|
| 802 |
+
}
|
| 803 |
+
result = documents_collection.insert_one(doc_data)
|
| 804 |
+
doc_id = str(result.inserted_id)
|
| 805 |
+
|
| 806 |
+
# Generate embedding
|
| 807 |
+
embedding = embedding_service.encode_text(request.text)
|
| 808 |
+
|
| 809 |
+
# Index to Qdrant
|
| 810 |
+
qdrant_service.index_data(
|
| 811 |
+
doc_id=doc_id,
|
| 812 |
+
embedding=embedding,
|
| 813 |
+
metadata={
|
| 814 |
+
"text": request.text,
|
| 815 |
+
"source": "api",
|
| 816 |
+
**(request.metadata or {})
|
| 817 |
+
}
|
| 818 |
+
)
|
| 819 |
+
|
| 820 |
+
return AddDocumentResponse(
|
| 821 |
+
success=True,
|
| 822 |
+
doc_id=doc_id,
|
| 823 |
+
message=f"Document added successfully with ID: {doc_id}"
|
| 824 |
+
)
|
| 825 |
+
|
| 826 |
+
except Exception as e:
|
| 827 |
+
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
|
| 828 |
+
|
| 829 |
+
|
| 830 |
+
@app.post("/rag/search", response_model=List[SearchResponse])
|
| 831 |
+
async def rag_search(
|
| 832 |
+
query: str = Form(...),
|
| 833 |
+
top_k: int = Form(5),
|
| 834 |
+
score_threshold: Optional[float] = Form(0.5)
|
| 835 |
+
):
|
| 836 |
+
"""
|
| 837 |
+
Search in knowledge base
|
| 838 |
+
|
| 839 |
+
Body:
|
| 840 |
+
- query: Search query
|
| 841 |
+
- top_k: Number of results (default: 5)
|
| 842 |
+
- score_threshold: Minimum score (default: 0.5)
|
| 843 |
+
|
| 844 |
+
Returns:
|
| 845 |
+
- results: List of matching documents
|
| 846 |
+
"""
|
| 847 |
+
try:
|
| 848 |
+
# Generate query embedding
|
| 849 |
+
query_embedding = embedding_service.encode_text(query)
|
| 850 |
+
|
| 851 |
+
# Search in Qdrant
|
| 852 |
+
results = qdrant_service.search(
|
| 853 |
+
query_embedding=query_embedding,
|
| 854 |
+
limit=top_k,
|
| 855 |
+
score_threshold=score_threshold
|
| 856 |
+
)
|
| 857 |
+
|
| 858 |
+
return [
|
| 859 |
+
SearchResponse(
|
| 860 |
+
id=result["id"],
|
| 861 |
+
confidence=result["confidence"],
|
| 862 |
+
metadata=result["metadata"]
|
| 863 |
+
)
|
| 864 |
+
for result in results
|
| 865 |
+
]
|
| 866 |
+
|
| 867 |
+
except Exception as e:
|
| 868 |
+
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
|
| 869 |
+
|
| 870 |
+
|
| 871 |
+
@app.get("/history")
|
| 872 |
+
async def get_history(limit: int = 10, skip: int = 0):
|
| 873 |
+
"""
|
| 874 |
+
Get chat history
|
| 875 |
+
|
| 876 |
+
Query params:
|
| 877 |
+
- limit: Number of messages to return (default: 10)
|
| 878 |
+
- skip: Number of messages to skip (default: 0)
|
| 879 |
+
|
| 880 |
+
Returns:
|
| 881 |
+
- history: List of chat messages
|
| 882 |
+
"""
|
| 883 |
+
try:
|
| 884 |
+
history = list(
|
| 885 |
+
chat_history_collection
|
| 886 |
+
.find({}, {"_id": 0})
|
| 887 |
+
.sort("timestamp", -1)
|
| 888 |
+
.skip(skip)
|
| 889 |
+
.limit(limit)
|
| 890 |
+
)
|
| 891 |
+
|
| 892 |
+
# Convert datetime to string
|
| 893 |
+
for msg in history:
|
| 894 |
+
if "timestamp" in msg:
|
| 895 |
+
msg["timestamp"] = msg["timestamp"].isoformat()
|
| 896 |
+
|
| 897 |
+
return {
|
| 898 |
+
"history": history,
|
| 899 |
+
"total": chat_history_collection.count_documents({})
|
| 900 |
+
}
|
| 901 |
+
|
| 902 |
+
except Exception as e:
|
| 903 |
+
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
|
| 904 |
+
|
| 905 |
+
|
| 906 |
+
@app.delete("/documents/{doc_id}")
|
| 907 |
+
async def delete_document_from_kb(doc_id: str):
|
| 908 |
+
"""
|
| 909 |
+
Delete document from knowledge base
|
| 910 |
+
|
| 911 |
+
Args:
|
| 912 |
+
- doc_id: Document ID (MongoDB ObjectId)
|
| 913 |
+
|
| 914 |
+
Returns:
|
| 915 |
+
- success: True/False
|
| 916 |
+
- message: Status message
|
| 917 |
+
"""
|
| 918 |
+
try:
|
| 919 |
+
# Delete from MongoDB
|
| 920 |
+
result = documents_collection.delete_one({"_id": doc_id})
|
| 921 |
|
| 922 |
+
# Delete from Qdrant
|
| 923 |
+
if result.deleted_count > 0:
|
| 924 |
+
qdrant_service.delete_by_id(doc_id)
|
| 925 |
+
return {"success": True, "message": f"Document {doc_id} deleted from knowledge base"}
|
| 926 |
+
else:
|
| 927 |
+
raise HTTPException(status_code=404, detail=f"Document {doc_id} not found")
|
| 928 |
|
| 929 |
+
except HTTPException:
|
| 930 |
+
raise
|
| 931 |
+
except Exception as e:
|
| 932 |
+
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
|
| 933 |
|
|
|
|
|
|
|
| 934 |
|
| 935 |
if __name__ == "__main__":
|
| 936 |
import uvicorn
|
| 937 |
+
uvicorn.run(
|
| 938 |
+
app,
|
| 939 |
+
host="0.0.0.0",
|
| 940 |
+
port=8000,
|
| 941 |
+
log_level="info"
|
| 942 |
+
)
|