minhvtt commited on
Commit
adec8cd
·
verified ·
1 Parent(s): 77f6baf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -56
app.py CHANGED
@@ -1,70 +1,47 @@
 
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
-
5
- def respond(
6
- message,
7
- history: list[dict[str, str]],
8
- system_message,
9
- max_tokens,
10
- temperature,
11
- top_p,
12
- hf_token: gr.OAuthToken,
13
- ):
14
  """
15
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
16
  """
17
- client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b")
18
-
19
- messages = [{"role": "system", "content": system_message}]
20
 
21
- messages.extend(history)
22
 
23
- messages.append({"role": "user", "content": message})
 
 
 
 
24
 
25
- response = ""
 
 
 
 
26
 
27
- for message in client.chat_completion(
28
- messages,
29
- max_tokens=max_tokens,
30
- stream=True,
31
- temperature=temperature,
32
- top_p=top_p,
33
- ):
34
- choices = message.choices
35
- token = ""
36
- if len(choices) and choices[0].delta.content:
37
- token = choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- chatbot = gr.ChatInterface(
47
- respond,
48
- type="messages",
49
- additional_inputs=[
50
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
51
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
52
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
53
- gr.Slider(
54
- minimum=0.1,
55
- maximum=1.0,
56
- value=0.95,
57
- step=0.05,
58
- label="Top-p (nucleus sampling)",
59
- ),
60
- ],
61
- )
62
-
63
- with gr.Blocks() as demo:
64
- with gr.Sidebar():
65
- gr.LoginButton()
66
- chatbot.render()
67
 
 
 
68
 
69
  if __name__ == "__main__":
70
- demo.launch()
 
 
1
+ """
2
+ Hugging Face Spaces compatible app
3
+ """
4
+ import os
5
  import gradio as gr
6
+ from main import app as fastapi_app
7
 
8
+ # Gradio wrapper cho Hugging Face Spaces
9
+ def create_gradio_interface():
 
 
 
 
 
 
 
 
10
  """
11
+ Tạo Gradio interface để deploy trên Hugging Face Spaces
12
  """
13
+ with gr.Blocks(title="Event Social Media Embeddings API") as demo:
14
+ gr.Markdown("""
15
+ # 🔍 Event Social Media Embeddings API
16
 
17
+ API để embeddings và search multimodal (text + images) với **Jina CLIP v2** + **Qdrant Cloud**
18
 
19
+ ## 🌟 Features:
20
+ - ✅ Multimodal: Text + Image embeddings
21
+ - ✅ Tiếng Việt: 100% support
22
+ - ✅ High Performance: ONNX + HNSW
23
+ - ✅ Cloud: Qdrant Cloud
24
 
25
+ ## 📡 API Endpoints:
26
+ - `POST /index` - Index data
27
+ - `POST /search` - Hybrid search
28
+ - `POST /search/text` - Text search
29
+ - `POST /search/image` - Image search
30
 
31
+ ### 🔗 API Docs:
32
+ Truy cập `/docs` để xem API documentation đầy đủ
33
+ """)
 
 
 
 
 
 
 
 
34
 
35
+ gr.Markdown("### API is running at the `/docs` endpoint")
 
36
 
37
+ return demo
38
 
39
+ # Mount FastAPI app
40
+ demo = create_gradio_interface()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
+ # Wrap FastAPI với Gradio
43
+ app = gr.mount_gradio_app(fastapi_app, demo, path="/")
44
 
45
  if __name__ == "__main__":
46
+ import uvicorn
47
+ uvicorn.run(app, host="0.0.0.0", port=7860)