Updated app with code for deduplication
Browse files
app.py
CHANGED
|
@@ -22,19 +22,17 @@ default_threshold = 0.9
|
|
| 22 |
ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
|
| 23 |
ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)
|
| 24 |
|
| 25 |
-
def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int = 1024
|
| 26 |
"""
|
| 27 |
Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
|
| 28 |
"""
|
| 29 |
-
#
|
| 30 |
-
progress(0, desc="Building search index...")
|
| 31 |
reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
|
| 32 |
|
| 33 |
deduplicated_indices = set(range(len(embedding_matrix)))
|
| 34 |
duplicate_to_original_mapping = {}
|
| 35 |
|
| 36 |
# Finding nearest neighbors
|
| 37 |
-
progress(0, desc="Finding nearest neighbors...")
|
| 38 |
results = reach.nearest_neighbor_threshold(
|
| 39 |
embedding_matrix,
|
| 40 |
threshold=threshold,
|
|
@@ -42,9 +40,8 @@ def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int
|
|
| 42 |
show_progressbar=True # Allow internal progress bar
|
| 43 |
)
|
| 44 |
|
| 45 |
-
# Processing duplicates
|
| 46 |
-
|
| 47 |
-
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=total_items)):
|
| 48 |
if i not in deduplicated_indices:
|
| 49 |
continue
|
| 50 |
|
|
@@ -57,19 +54,17 @@ def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int
|
|
| 57 |
|
| 58 |
return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
|
| 59 |
|
| 60 |
-
def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix_2: np.ndarray, threshold: float, batch_size: int = 1024
|
| 61 |
"""
|
| 62 |
Deduplicate embeddings across two datasets and return the indices of duplicates between them.
|
| 63 |
"""
|
| 64 |
-
#
|
| 65 |
-
progress(0, desc="Building search index from Dataset 1...")
|
| 66 |
reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))])
|
| 67 |
|
| 68 |
duplicate_indices_in_test = []
|
| 69 |
duplicate_to_original_mapping = {}
|
| 70 |
|
| 71 |
# Finding nearest neighbors between datasets
|
| 72 |
-
progress(0, desc="Finding nearest neighbors between datasets...")
|
| 73 |
results = reach.nearest_neighbor_threshold(
|
| 74 |
embedding_matrix_2,
|
| 75 |
threshold=threshold,
|
|
@@ -77,9 +72,8 @@ def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix
|
|
| 77 |
show_progressbar=True # Allow internal progress bar
|
| 78 |
)
|
| 79 |
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates across datasets", total=total_items)):
|
| 83 |
similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
|
| 84 |
|
| 85 |
if similar_indices:
|
|
@@ -103,13 +97,12 @@ def perform_deduplication(
|
|
| 103 |
threshold=default_threshold,
|
| 104 |
progress=gr.Progress(track_tqdm=True)
|
| 105 |
):
|
| 106 |
-
# Monkey-
|
| 107 |
original_tqdm = tqdm.tqdm
|
| 108 |
-
original_reach_tqdm = Reach.__dict__['tqdm'] if 'tqdm' in Reach.__dict__ else None
|
| 109 |
tqdm.tqdm = progress.tqdm
|
| 110 |
-
sys.modules
|
| 111 |
-
|
| 112 |
-
|
| 113 |
|
| 114 |
try:
|
| 115 |
# Convert threshold to float
|
|
@@ -117,140 +110,121 @@ def perform_deduplication(
|
|
| 117 |
|
| 118 |
if deduplication_type == "Single dataset":
|
| 119 |
# Load Dataset 1
|
| 120 |
-
|
| 121 |
if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
|
| 122 |
ds = ds_default1
|
| 123 |
else:
|
| 124 |
ds = load_dataset(dataset1_name, split=dataset1_split)
|
| 125 |
|
| 126 |
# Extract texts
|
| 127 |
-
|
| 128 |
texts = [example[dataset1_text_column] for example in ds]
|
| 129 |
|
| 130 |
# Compute embeddings
|
| 131 |
-
|
| 132 |
embedding_matrix = model.encode(texts, show_progressbar=True) # Enable internal progress bar
|
| 133 |
|
| 134 |
# Deduplicate
|
| 135 |
-
|
| 136 |
-
|
|
|
|
| 137 |
)
|
| 138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
return result_text
|
| 140 |
|
| 141 |
elif deduplication_type == "Cross-dataset":
|
| 142 |
# Load Dataset 1
|
| 143 |
-
|
| 144 |
if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
|
| 145 |
ds1 = ds_default1
|
| 146 |
else:
|
| 147 |
ds1 = load_dataset(dataset1_name, split=dataset1_split)
|
| 148 |
|
| 149 |
# Load Dataset 2
|
| 150 |
-
|
| 151 |
if dataset2_name == default_dataset2_name and dataset2_split == default_dataset2_split:
|
| 152 |
ds2 = ds_default2
|
| 153 |
else:
|
| 154 |
ds2 = load_dataset(dataset2_name, split=dataset2_split)
|
| 155 |
|
| 156 |
# Extract texts from Dataset 1
|
| 157 |
-
|
| 158 |
texts1 = [example[dataset1_text_column] for example in ds1]
|
| 159 |
|
| 160 |
# Extract texts from Dataset 2
|
| 161 |
-
|
| 162 |
texts2 = [example[dataset2_text_column] for example in ds2]
|
| 163 |
|
| 164 |
# Compute embeddings for Dataset 1
|
| 165 |
-
|
| 166 |
embedding_matrix1 = model.encode(texts1, show_progressbar=True)
|
| 167 |
|
| 168 |
# Compute embeddings for Dataset 2
|
| 169 |
-
|
| 170 |
embedding_matrix2 = model.encode(texts2, show_progressbar=True)
|
| 171 |
|
| 172 |
# Deduplicate across datasets
|
| 173 |
-
|
| 174 |
-
|
|
|
|
| 175 |
)
|
| 176 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
return result_text
|
| 178 |
|
| 179 |
finally:
|
| 180 |
# Restore original tqdm
|
| 181 |
tqdm.tqdm = original_tqdm
|
| 182 |
-
sys.modules
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
# Restore reach's original tqdm
|
| 186 |
-
if original_reach_tqdm is not None:
|
| 187 |
-
Reach.tqdm = original_reach_tqdm
|
| 188 |
-
else:
|
| 189 |
-
del Reach.tqdm # If it wasn't originally in Reach's __dict__
|
| 190 |
-
|
| 191 |
-
def deduplicate_and_prepare_results_single(embedding_matrix, texts, threshold, progress):
|
| 192 |
-
# Deduplicate
|
| 193 |
-
deduplicated_indices, duplicate_to_original_mapping = deduplicate(
|
| 194 |
-
embedding_matrix, threshold, progress=progress
|
| 195 |
-
)
|
| 196 |
-
|
| 197 |
-
# Prepare the results
|
| 198 |
-
num_duplicates = len(duplicate_to_original_mapping)
|
| 199 |
-
num_total = len(texts)
|
| 200 |
-
num_deduplicated = len(deduplicated_indices)
|
| 201 |
-
|
| 202 |
-
result_text = f"**Total documents:** {num_total}\n"
|
| 203 |
-
result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
| 204 |
-
result_text += f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
|
| 205 |
-
|
| 206 |
-
# Show deduplicated examples
|
| 207 |
-
if num_duplicates > 0:
|
| 208 |
-
result_text += "**Examples of duplicates found:**\n\n"
|
| 209 |
-
num_examples = min(5, num_duplicates)
|
| 210 |
-
for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
|
| 211 |
-
original_text = texts[original_idx]
|
| 212 |
-
duplicate_text = texts[duplicate_idx]
|
| 213 |
-
differences = display_word_differences(original_text, duplicate_text)
|
| 214 |
-
result_text += f"**Original text:**\n{original_text}\n\n"
|
| 215 |
-
result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
|
| 216 |
-
result_text += f"**Differences:**\n{differences}\n"
|
| 217 |
-
result_text += "-" * 50 + "\n\n"
|
| 218 |
-
else:
|
| 219 |
-
result_text += "No duplicates found."
|
| 220 |
-
|
| 221 |
-
return result_text
|
| 222 |
-
|
| 223 |
-
def deduplicate_and_prepare_results_cross(embedding_matrix1, embedding_matrix2, texts1, texts2, threshold, progress, dataset2_name, dataset2_split):
|
| 224 |
-
# Deduplicate across datasets
|
| 225 |
-
duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(
|
| 226 |
-
embedding_matrix1, embedding_matrix2, threshold, progress=progress
|
| 227 |
-
)
|
| 228 |
-
|
| 229 |
-
num_duplicates = len(duplicate_indices_in_ds2)
|
| 230 |
-
num_total_ds2 = len(texts2)
|
| 231 |
-
num_unique_ds2 = num_total_ds2 - num_duplicates
|
| 232 |
-
|
| 233 |
-
result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n"
|
| 234 |
-
result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
|
| 235 |
-
result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
|
| 236 |
-
|
| 237 |
-
# Show deduplicated examples
|
| 238 |
-
if num_duplicates > 0:
|
| 239 |
-
result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
|
| 240 |
-
num_examples = min(5, num_duplicates)
|
| 241 |
-
for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
|
| 242 |
-
original_idx = duplicate_to_original_mapping[duplicate_idx]
|
| 243 |
-
original_text = texts1[original_idx]
|
| 244 |
-
duplicate_text = texts2[duplicate_idx]
|
| 245 |
-
differences = display_word_differences(original_text, duplicate_text)
|
| 246 |
-
result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
|
| 247 |
-
result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
|
| 248 |
-
result_text += f"**Differences:**\n{differences}\n"
|
| 249 |
-
result_text += "-" * 50 + "\n\n"
|
| 250 |
-
else:
|
| 251 |
-
result_text += "No duplicates found."
|
| 252 |
-
|
| 253 |
-
return result_text
|
| 254 |
|
| 255 |
with gr.Blocks() as demo:
|
| 256 |
gr.Markdown("# Semantic Deduplication")
|
|
@@ -316,6 +290,324 @@ with gr.Blocks() as demo:
|
|
| 316 |
demo.launch()
|
| 317 |
|
| 318 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
|
| 320 |
|
| 321 |
# import gradio as gr
|
|
|
|
| 22 |
ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
|
| 23 |
ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)
|
| 24 |
|
| 25 |
+
def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int = 1024) -> tuple[np.ndarray, dict[int, int]]:
|
| 26 |
"""
|
| 27 |
Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
|
| 28 |
"""
|
| 29 |
+
# Building the index
|
|
|
|
| 30 |
reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
|
| 31 |
|
| 32 |
deduplicated_indices = set(range(len(embedding_matrix)))
|
| 33 |
duplicate_to_original_mapping = {}
|
| 34 |
|
| 35 |
# Finding nearest neighbors
|
|
|
|
| 36 |
results = reach.nearest_neighbor_threshold(
|
| 37 |
embedding_matrix,
|
| 38 |
threshold=threshold,
|
|
|
|
| 40 |
show_progressbar=True # Allow internal progress bar
|
| 41 |
)
|
| 42 |
|
| 43 |
+
# Processing duplicates
|
| 44 |
+
for i, similar_items in enumerate(results):
|
|
|
|
| 45 |
if i not in deduplicated_indices:
|
| 46 |
continue
|
| 47 |
|
|
|
|
| 54 |
|
| 55 |
return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
|
| 56 |
|
| 57 |
+
def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix_2: np.ndarray, threshold: float, batch_size: int = 1024) -> tuple[list[int], dict[int, int]]:
|
| 58 |
"""
|
| 59 |
Deduplicate embeddings across two datasets and return the indices of duplicates between them.
|
| 60 |
"""
|
| 61 |
+
# Building the index from Dataset 1
|
|
|
|
| 62 |
reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))])
|
| 63 |
|
| 64 |
duplicate_indices_in_test = []
|
| 65 |
duplicate_to_original_mapping = {}
|
| 66 |
|
| 67 |
# Finding nearest neighbors between datasets
|
|
|
|
| 68 |
results = reach.nearest_neighbor_threshold(
|
| 69 |
embedding_matrix_2,
|
| 70 |
threshold=threshold,
|
|
|
|
| 72 |
show_progressbar=True # Allow internal progress bar
|
| 73 |
)
|
| 74 |
|
| 75 |
+
# Processing duplicates
|
| 76 |
+
for i, similar_items in enumerate(results):
|
|
|
|
| 77 |
similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
|
| 78 |
|
| 79 |
if similar_indices:
|
|
|
|
| 97 |
threshold=default_threshold,
|
| 98 |
progress=gr.Progress(track_tqdm=True)
|
| 99 |
):
|
| 100 |
+
# Deep Monkey-Patching of tqdm
|
| 101 |
original_tqdm = tqdm.tqdm
|
|
|
|
| 102 |
tqdm.tqdm = progress.tqdm
|
| 103 |
+
for mod_name in list(sys.modules.keys()):
|
| 104 |
+
if 'tqdm' in mod_name:
|
| 105 |
+
sys.modules[mod_name].tqdm = progress.tqdm
|
| 106 |
|
| 107 |
try:
|
| 108 |
# Convert threshold to float
|
|
|
|
| 110 |
|
| 111 |
if deduplication_type == "Single dataset":
|
| 112 |
# Load Dataset 1
|
| 113 |
+
gr.print("Loading Dataset 1...")
|
| 114 |
if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
|
| 115 |
ds = ds_default1
|
| 116 |
else:
|
| 117 |
ds = load_dataset(dataset1_name, split=dataset1_split)
|
| 118 |
|
| 119 |
# Extract texts
|
| 120 |
+
gr.print("Extracting texts from Dataset 1...")
|
| 121 |
texts = [example[dataset1_text_column] for example in ds]
|
| 122 |
|
| 123 |
# Compute embeddings
|
| 124 |
+
gr.print("Computing embeddings for Dataset 1...")
|
| 125 |
embedding_matrix = model.encode(texts, show_progressbar=True) # Enable internal progress bar
|
| 126 |
|
| 127 |
# Deduplicate
|
| 128 |
+
gr.print("Deduplicating embeddings...")
|
| 129 |
+
deduplicated_indices, duplicate_to_original_mapping = deduplicate(
|
| 130 |
+
embedding_matrix, threshold
|
| 131 |
)
|
| 132 |
|
| 133 |
+
# Prepare the results
|
| 134 |
+
num_duplicates = len(duplicate_to_original_mapping)
|
| 135 |
+
num_total = len(texts)
|
| 136 |
+
num_deduplicated = len(deduplicated_indices)
|
| 137 |
+
|
| 138 |
+
result_text = f"**Total documents:** {num_total}\n"
|
| 139 |
+
result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
| 140 |
+
result_text += f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
|
| 141 |
+
|
| 142 |
+
# Show deduplicated examples
|
| 143 |
+
if num_duplicates > 0:
|
| 144 |
+
result_text += "**Examples of duplicates found:**\n\n"
|
| 145 |
+
num_examples = min(5, num_duplicates)
|
| 146 |
+
for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
|
| 147 |
+
original_text = texts[original_idx]
|
| 148 |
+
duplicate_text = texts[duplicate_idx]
|
| 149 |
+
differences = display_word_differences(original_text, duplicate_text)
|
| 150 |
+
result_text += f"**Original text:**\n{original_text}\n\n"
|
| 151 |
+
result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
|
| 152 |
+
result_text += f"**Differences:**\n{differences}\n"
|
| 153 |
+
result_text += "-" * 50 + "\n\n"
|
| 154 |
+
else:
|
| 155 |
+
result_text += "No duplicates found."
|
| 156 |
+
|
| 157 |
return result_text
|
| 158 |
|
| 159 |
elif deduplication_type == "Cross-dataset":
|
| 160 |
# Load Dataset 1
|
| 161 |
+
gr.print("Loading Dataset 1...")
|
| 162 |
if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
|
| 163 |
ds1 = ds_default1
|
| 164 |
else:
|
| 165 |
ds1 = load_dataset(dataset1_name, split=dataset1_split)
|
| 166 |
|
| 167 |
# Load Dataset 2
|
| 168 |
+
gr.print("Loading Dataset 2...")
|
| 169 |
if dataset2_name == default_dataset2_name and dataset2_split == default_dataset2_split:
|
| 170 |
ds2 = ds_default2
|
| 171 |
else:
|
| 172 |
ds2 = load_dataset(dataset2_name, split=dataset2_split)
|
| 173 |
|
| 174 |
# Extract texts from Dataset 1
|
| 175 |
+
gr.print("Extracting texts from Dataset 1...")
|
| 176 |
texts1 = [example[dataset1_text_column] for example in ds1]
|
| 177 |
|
| 178 |
# Extract texts from Dataset 2
|
| 179 |
+
gr.print("Extracting texts from Dataset 2...")
|
| 180 |
texts2 = [example[dataset2_text_column] for example in ds2]
|
| 181 |
|
| 182 |
# Compute embeddings for Dataset 1
|
| 183 |
+
gr.print("Computing embeddings for Dataset 1...")
|
| 184 |
embedding_matrix1 = model.encode(texts1, show_progressbar=True)
|
| 185 |
|
| 186 |
# Compute embeddings for Dataset 2
|
| 187 |
+
gr.print("Computing embeddings for Dataset 2...")
|
| 188 |
embedding_matrix2 = model.encode(texts2, show_progressbar=True)
|
| 189 |
|
| 190 |
# Deduplicate across datasets
|
| 191 |
+
gr.print("Deduplicating embeddings across datasets...")
|
| 192 |
+
duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(
|
| 193 |
+
embedding_matrix1, embedding_matrix2, threshold
|
| 194 |
)
|
| 195 |
|
| 196 |
+
num_duplicates = len(duplicate_indices_in_ds2)
|
| 197 |
+
num_total_ds2 = len(texts2)
|
| 198 |
+
num_unique_ds2 = num_total_ds2 - num_duplicates
|
| 199 |
+
|
| 200 |
+
result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n"
|
| 201 |
+
result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
|
| 202 |
+
result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
|
| 203 |
+
|
| 204 |
+
# Show deduplicated examples
|
| 205 |
+
if num_duplicates > 0:
|
| 206 |
+
result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
|
| 207 |
+
num_examples = min(5, num_duplicates)
|
| 208 |
+
for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
|
| 209 |
+
original_idx = duplicate_to_original_mapping[duplicate_idx]
|
| 210 |
+
original_text = texts1[original_idx]
|
| 211 |
+
duplicate_text = texts2[duplicate_idx]
|
| 212 |
+
differences = display_word_differences(original_text, duplicate_text)
|
| 213 |
+
result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
|
| 214 |
+
result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
|
| 215 |
+
result_text += f"**Differences:**\n{differences}\n"
|
| 216 |
+
result_text += "-" * 50 + "\n\n"
|
| 217 |
+
else:
|
| 218 |
+
result_text += "No duplicates found."
|
| 219 |
+
|
| 220 |
return result_text
|
| 221 |
|
| 222 |
finally:
|
| 223 |
# Restore original tqdm
|
| 224 |
tqdm.tqdm = original_tqdm
|
| 225 |
+
for mod_name in list(sys.modules.keys()):
|
| 226 |
+
if 'tqdm' in mod_name:
|
| 227 |
+
sys.modules[mod_name].tqdm = original_tqdm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
|
| 229 |
with gr.Blocks() as demo:
|
| 230 |
gr.Markdown("# Semantic Deduplication")
|
|
|
|
| 290 |
demo.launch()
|
| 291 |
|
| 292 |
|
| 293 |
+
# import gradio as gr
|
| 294 |
+
# from datasets import load_dataset
|
| 295 |
+
# import numpy as np
|
| 296 |
+
# from model2vec import StaticModel
|
| 297 |
+
# from reach import Reach
|
| 298 |
+
# from difflib import ndiff
|
| 299 |
+
# import sys
|
| 300 |
+
# import tqdm
|
| 301 |
+
|
| 302 |
+
# # Load the model at startup
|
| 303 |
+
# model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
| 304 |
+
|
| 305 |
+
# # Update default dataset to 'sst2' and set default threshold to 0.9
|
| 306 |
+
# default_dataset1_name = "sst2"
|
| 307 |
+
# default_dataset1_split = "train"
|
| 308 |
+
# default_dataset2_name = "sst2"
|
| 309 |
+
# default_dataset2_split = "validation"
|
| 310 |
+
# default_text_column = "sentence"
|
| 311 |
+
# default_threshold = 0.9
|
| 312 |
+
|
| 313 |
+
# # Load the default datasets at startup
|
| 314 |
+
# ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
|
| 315 |
+
# ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)
|
| 316 |
+
|
| 317 |
+
# def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[np.ndarray, dict[int, int]]:
|
| 318 |
+
# """
|
| 319 |
+
# Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
|
| 320 |
+
# """
|
| 321 |
+
# # Update progress to indicate building the index
|
| 322 |
+
# progress(0, desc="Building search index...")
|
| 323 |
+
# reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
|
| 324 |
+
|
| 325 |
+
# deduplicated_indices = set(range(len(embedding_matrix)))
|
| 326 |
+
# duplicate_to_original_mapping = {}
|
| 327 |
+
|
| 328 |
+
# # Finding nearest neighbors
|
| 329 |
+
# progress(0, desc="Finding nearest neighbors...")
|
| 330 |
+
# results = reach.nearest_neighbor_threshold(
|
| 331 |
+
# embedding_matrix,
|
| 332 |
+
# threshold=threshold,
|
| 333 |
+
# batch_size=batch_size,
|
| 334 |
+
# show_progressbar=True # Allow internal progress bar
|
| 335 |
+
# )
|
| 336 |
+
|
| 337 |
+
# # Processing duplicates with a progress bar
|
| 338 |
+
# total_items = len(embedding_matrix)
|
| 339 |
+
# for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=total_items)):
|
| 340 |
+
# if i not in deduplicated_indices:
|
| 341 |
+
# continue
|
| 342 |
+
|
| 343 |
+
# similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
|
| 344 |
+
|
| 345 |
+
# for sim_idx in similar_indices:
|
| 346 |
+
# if sim_idx in deduplicated_indices:
|
| 347 |
+
# deduplicated_indices.remove(sim_idx)
|
| 348 |
+
# duplicate_to_original_mapping[sim_idx] = i
|
| 349 |
+
|
| 350 |
+
# return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
|
| 351 |
+
|
| 352 |
+
# def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix_2: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[list[int], dict[int, int]]:
|
| 353 |
+
# """
|
| 354 |
+
# Deduplicate embeddings across two datasets and return the indices of duplicates between them.
|
| 355 |
+
# """
|
| 356 |
+
# # Update progress to indicate building the index
|
| 357 |
+
# progress(0, desc="Building search index from Dataset 1...")
|
| 358 |
+
# reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))])
|
| 359 |
+
|
| 360 |
+
# duplicate_indices_in_test = []
|
| 361 |
+
# duplicate_to_original_mapping = {}
|
| 362 |
+
|
| 363 |
+
# # Finding nearest neighbors between datasets
|
| 364 |
+
# progress(0, desc="Finding nearest neighbors between datasets...")
|
| 365 |
+
# results = reach.nearest_neighbor_threshold(
|
| 366 |
+
# embedding_matrix_2,
|
| 367 |
+
# threshold=threshold,
|
| 368 |
+
# batch_size=batch_size,
|
| 369 |
+
# show_progressbar=True # Allow internal progress bar
|
| 370 |
+
# )
|
| 371 |
+
|
| 372 |
+
# total_items = len(embedding_matrix_2)
|
| 373 |
+
# # Processing duplicates with a progress bar
|
| 374 |
+
# for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates across datasets", total=total_items)):
|
| 375 |
+
# similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
|
| 376 |
+
|
| 377 |
+
# if similar_indices:
|
| 378 |
+
# duplicate_indices_in_test.append(i)
|
| 379 |
+
# duplicate_to_original_mapping[i] = similar_indices[0]
|
| 380 |
+
|
| 381 |
+
# return duplicate_indices_in_test, duplicate_to_original_mapping
|
| 382 |
+
|
| 383 |
+
# def display_word_differences(x: str, y: str) -> str:
|
| 384 |
+
# diff = ndiff(x.split(), y.split())
|
| 385 |
+
# return " ".join([word for word in diff if word.startswith(('+', '-'))])
|
| 386 |
+
|
| 387 |
+
# def perform_deduplication(
|
| 388 |
+
# deduplication_type,
|
| 389 |
+
# dataset1_name,
|
| 390 |
+
# dataset1_split,
|
| 391 |
+
# dataset1_text_column,
|
| 392 |
+
# dataset2_name="",
|
| 393 |
+
# dataset2_split="",
|
| 394 |
+
# dataset2_text_column="",
|
| 395 |
+
# threshold=default_threshold,
|
| 396 |
+
# progress=gr.Progress(track_tqdm=True)
|
| 397 |
+
# ):
|
| 398 |
+
# # Monkey-patch tqdm
|
| 399 |
+
# original_tqdm = tqdm.tqdm
|
| 400 |
+
# original_reach_tqdm = Reach.__dict__['tqdm'] if 'tqdm' in Reach.__dict__ else None
|
| 401 |
+
# tqdm.tqdm = progress.tqdm
|
| 402 |
+
# sys.modules['tqdm'].tqdm = progress.tqdm
|
| 403 |
+
# sys.modules['tqdm.auto'].tqdm = progress.tqdm
|
| 404 |
+
# Reach.tqdm = progress.tqdm # Monkey-patch reach's tqdm
|
| 405 |
+
|
| 406 |
+
# try:
|
| 407 |
+
# # Convert threshold to float
|
| 408 |
+
# threshold = float(threshold)
|
| 409 |
+
|
| 410 |
+
# if deduplication_type == "Single dataset":
|
| 411 |
+
# # Load Dataset 1
|
| 412 |
+
# progress(0, desc="Loading Dataset 1...")
|
| 413 |
+
# if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
|
| 414 |
+
# ds = ds_default1
|
| 415 |
+
# else:
|
| 416 |
+
# ds = load_dataset(dataset1_name, split=dataset1_split)
|
| 417 |
+
|
| 418 |
+
# # Extract texts
|
| 419 |
+
# progress(0, desc="Extracting texts from Dataset 1...")
|
| 420 |
+
# texts = [example[dataset1_text_column] for example in ds]
|
| 421 |
+
|
| 422 |
+
# # Compute embeddings
|
| 423 |
+
# progress(0, desc="Computing embeddings for Dataset 1...")
|
| 424 |
+
# embedding_matrix = model.encode(texts, show_progressbar=True) # Enable internal progress bar
|
| 425 |
+
|
| 426 |
+
# # Deduplicate
|
| 427 |
+
# result_text = deduplicate_and_prepare_results_single(
|
| 428 |
+
# embedding_matrix, texts, threshold, progress
|
| 429 |
+
# )
|
| 430 |
+
|
| 431 |
+
# return result_text
|
| 432 |
+
|
| 433 |
+
# elif deduplication_type == "Cross-dataset":
|
| 434 |
+
# # Load Dataset 1
|
| 435 |
+
# progress(0, desc="Loading Dataset 1...")
|
| 436 |
+
# if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
|
| 437 |
+
# ds1 = ds_default1
|
| 438 |
+
# else:
|
| 439 |
+
# ds1 = load_dataset(dataset1_name, split=dataset1_split)
|
| 440 |
+
|
| 441 |
+
# # Load Dataset 2
|
| 442 |
+
# progress(0, desc="Loading Dataset 2...")
|
| 443 |
+
# if dataset2_name == default_dataset2_name and dataset2_split == default_dataset2_split:
|
| 444 |
+
# ds2 = ds_default2
|
| 445 |
+
# else:
|
| 446 |
+
# ds2 = load_dataset(dataset2_name, split=dataset2_split)
|
| 447 |
+
|
| 448 |
+
# # Extract texts from Dataset 1
|
| 449 |
+
# progress(0, desc="Extracting texts from Dataset 1...")
|
| 450 |
+
# texts1 = [example[dataset1_text_column] for example in ds1]
|
| 451 |
+
|
| 452 |
+
# # Extract texts from Dataset 2
|
| 453 |
+
# progress(0, desc="Extracting texts from Dataset 2...")
|
| 454 |
+
# texts2 = [example[dataset2_text_column] for example in ds2]
|
| 455 |
+
|
| 456 |
+
# # Compute embeddings for Dataset 1
|
| 457 |
+
# progress(0, desc="Computing embeddings for Dataset 1...")
|
| 458 |
+
# embedding_matrix1 = model.encode(texts1, show_progressbar=True)
|
| 459 |
+
|
| 460 |
+
# # Compute embeddings for Dataset 2
|
| 461 |
+
# progress(0, desc="Computing embeddings for Dataset 2...")
|
| 462 |
+
# embedding_matrix2 = model.encode(texts2, show_progressbar=True)
|
| 463 |
+
|
| 464 |
+
# # Deduplicate across datasets
|
| 465 |
+
# result_text = deduplicate_and_prepare_results_cross(
|
| 466 |
+
# embedding_matrix1, embedding_matrix2, texts1, texts2, threshold, progress, dataset2_name, dataset2_split
|
| 467 |
+
# )
|
| 468 |
+
|
| 469 |
+
# return result_text
|
| 470 |
+
|
| 471 |
+
# finally:
|
| 472 |
+
# # Restore original tqdm
|
| 473 |
+
# tqdm.tqdm = original_tqdm
|
| 474 |
+
# sys.modules['tqdm'].tqdm = original_tqdm
|
| 475 |
+
# sys.modules['tqdm.auto'].tqdm = original_tqdm
|
| 476 |
+
|
| 477 |
+
# # Restore reach's original tqdm
|
| 478 |
+
# if original_reach_tqdm is not None:
|
| 479 |
+
# Reach.tqdm = original_reach_tqdm
|
| 480 |
+
# else:
|
| 481 |
+
# del Reach.tqdm # If it wasn't originally in Reach's __dict__
|
| 482 |
+
|
| 483 |
+
# def deduplicate_and_prepare_results_single(embedding_matrix, texts, threshold, progress):
|
| 484 |
+
# # Deduplicate
|
| 485 |
+
# deduplicated_indices, duplicate_to_original_mapping = deduplicate(
|
| 486 |
+
# embedding_matrix, threshold, progress=progress
|
| 487 |
+
# )
|
| 488 |
+
|
| 489 |
+
# # Prepare the results
|
| 490 |
+
# num_duplicates = len(duplicate_to_original_mapping)
|
| 491 |
+
# num_total = len(texts)
|
| 492 |
+
# num_deduplicated = len(deduplicated_indices)
|
| 493 |
+
|
| 494 |
+
# result_text = f"**Total documents:** {num_total}\n"
|
| 495 |
+
# result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
| 496 |
+
# result_text += f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
|
| 497 |
+
|
| 498 |
+
# # Show deduplicated examples
|
| 499 |
+
# if num_duplicates > 0:
|
| 500 |
+
# result_text += "**Examples of duplicates found:**\n\n"
|
| 501 |
+
# num_examples = min(5, num_duplicates)
|
| 502 |
+
# for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
|
| 503 |
+
# original_text = texts[original_idx]
|
| 504 |
+
# duplicate_text = texts[duplicate_idx]
|
| 505 |
+
# differences = display_word_differences(original_text, duplicate_text)
|
| 506 |
+
# result_text += f"**Original text:**\n{original_text}\n\n"
|
| 507 |
+
# result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
|
| 508 |
+
# result_text += f"**Differences:**\n{differences}\n"
|
| 509 |
+
# result_text += "-" * 50 + "\n\n"
|
| 510 |
+
# else:
|
| 511 |
+
# result_text += "No duplicates found."
|
| 512 |
+
|
| 513 |
+
# return result_text
|
| 514 |
+
|
| 515 |
+
# def deduplicate_and_prepare_results_cross(embedding_matrix1, embedding_matrix2, texts1, texts2, threshold, progress, dataset2_name, dataset2_split):
|
| 516 |
+
# # Deduplicate across datasets
|
| 517 |
+
# duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(
|
| 518 |
+
# embedding_matrix1, embedding_matrix2, threshold, progress=progress
|
| 519 |
+
# )
|
| 520 |
+
|
| 521 |
+
# num_duplicates = len(duplicate_indices_in_ds2)
|
| 522 |
+
# num_total_ds2 = len(texts2)
|
| 523 |
+
# num_unique_ds2 = num_total_ds2 - num_duplicates
|
| 524 |
+
|
| 525 |
+
# result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n"
|
| 526 |
+
# result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
|
| 527 |
+
# result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
|
| 528 |
+
|
| 529 |
+
# # Show deduplicated examples
|
| 530 |
+
# if num_duplicates > 0:
|
| 531 |
+
# result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
|
| 532 |
+
# num_examples = min(5, num_duplicates)
|
| 533 |
+
# for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
|
| 534 |
+
# original_idx = duplicate_to_original_mapping[duplicate_idx]
|
| 535 |
+
# original_text = texts1[original_idx]
|
| 536 |
+
# duplicate_text = texts2[duplicate_idx]
|
| 537 |
+
# differences = display_word_differences(original_text, duplicate_text)
|
| 538 |
+
# result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
|
| 539 |
+
# result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
|
| 540 |
+
# result_text += f"**Differences:**\n{differences}\n"
|
| 541 |
+
# result_text += "-" * 50 + "\n\n"
|
| 542 |
+
# else:
|
| 543 |
+
# result_text += "No duplicates found."
|
| 544 |
+
|
| 545 |
+
# return result_text
|
| 546 |
+
|
| 547 |
+
# with gr.Blocks() as demo:
|
| 548 |
+
# gr.Markdown("# Semantic Deduplication")
|
| 549 |
+
|
| 550 |
+
# deduplication_type = gr.Radio(
|
| 551 |
+
# choices=["Single dataset", "Cross-dataset"],
|
| 552 |
+
# label="Deduplication Type",
|
| 553 |
+
# value="Single dataset"
|
| 554 |
+
# )
|
| 555 |
+
|
| 556 |
+
# with gr.Row():
|
| 557 |
+
# dataset1_name = gr.Textbox(value=default_dataset1_name, label="Dataset 1 Name")
|
| 558 |
+
# dataset1_split = gr.Textbox(value=default_dataset1_split, label="Dataset 1 Split")
|
| 559 |
+
# dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
| 560 |
+
|
| 561 |
+
# dataset2_inputs = gr.Column(visible=False)
|
| 562 |
+
# with dataset2_inputs:
|
| 563 |
+
# gr.Markdown("### Dataset 2")
|
| 564 |
+
# with gr.Row():
|
| 565 |
+
# dataset2_name = gr.Textbox(value=default_dataset2_name, label="Dataset 2 Name")
|
| 566 |
+
# dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split")
|
| 567 |
+
# dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
| 568 |
+
|
| 569 |
+
# threshold = gr.Slider(
|
| 570 |
+
# minimum=0.0,
|
| 571 |
+
# maximum=1.0,
|
| 572 |
+
# value=default_threshold,
|
| 573 |
+
# label="Similarity Threshold"
|
| 574 |
+
# )
|
| 575 |
+
|
| 576 |
+
# compute_button = gr.Button("Compute")
|
| 577 |
+
|
| 578 |
+
# output = gr.Markdown()
|
| 579 |
+
|
| 580 |
+
# # Function to update the visibility of dataset2_inputs
|
| 581 |
+
# def update_visibility(deduplication_type_value):
|
| 582 |
+
# if deduplication_type_value == "Cross-dataset":
|
| 583 |
+
# return gr.update(visible=True)
|
| 584 |
+
# else:
|
| 585 |
+
# return gr.update(visible=False)
|
| 586 |
+
|
| 587 |
+
# deduplication_type.change(
|
| 588 |
+
# update_visibility,
|
| 589 |
+
# inputs=deduplication_type,
|
| 590 |
+
# outputs=dataset2_inputs
|
| 591 |
+
# )
|
| 592 |
+
|
| 593 |
+
# compute_button.click(
|
| 594 |
+
# fn=perform_deduplication,
|
| 595 |
+
# inputs=[
|
| 596 |
+
# deduplication_type,
|
| 597 |
+
# dataset1_name,
|
| 598 |
+
# dataset1_split,
|
| 599 |
+
# dataset1_text_column,
|
| 600 |
+
# dataset2_name,
|
| 601 |
+
# dataset2_split,
|
| 602 |
+
# dataset2_text_column,
|
| 603 |
+
# threshold
|
| 604 |
+
# ],
|
| 605 |
+
# outputs=output
|
| 606 |
+
# )
|
| 607 |
+
|
| 608 |
+
# demo.launch()
|
| 609 |
+
|
| 610 |
+
|
| 611 |
|
| 612 |
|
| 613 |
# import gradio as gr
|