Updates
Browse files
app.py
CHANGED
|
@@ -4,7 +4,8 @@ import numpy as np
|
|
| 4 |
from model2vec import StaticModel
|
| 5 |
from reach import Reach
|
| 6 |
from difflib import ndiff
|
| 7 |
-
import
|
|
|
|
| 8 |
|
| 9 |
# Load the model at startup
|
| 10 |
model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
|
@@ -26,9 +27,65 @@ def batch_iterable(iterable, batch_size):
|
|
| 26 |
for i in range(0, len(iterable), batch_size):
|
| 27 |
yield iterable[i:i + batch_size]
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
def display_word_differences(x: str, y: str) -> str:
|
| 30 |
diff = ndiff(x.split(), y.split())
|
| 31 |
-
return " ".join([word for word in diff if word.startswith((
|
| 32 |
|
| 33 |
def perform_deduplication(
|
| 34 |
deduplication_type,
|
|
@@ -39,7 +96,7 @@ def perform_deduplication(
|
|
| 39 |
dataset2_split="",
|
| 40 |
dataset2_text_column="",
|
| 41 |
threshold=default_threshold,
|
| 42 |
-
progress=gr.Progress(track_tqdm=True)
|
| 43 |
):
|
| 44 |
try:
|
| 45 |
# Convert threshold to float
|
|
@@ -52,7 +109,10 @@ def perform_deduplication(
|
|
| 52 |
# Load Dataset 1
|
| 53 |
status = "Loading Dataset 1..."
|
| 54 |
yield status, ""
|
| 55 |
-
if
|
|
|
|
|
|
|
|
|
|
| 56 |
ds = ds_default1
|
| 57 |
else:
|
| 58 |
ds = load_dataset(dataset1_name, split=dataset1_split)
|
|
@@ -65,15 +125,12 @@ def perform_deduplication(
|
|
| 65 |
# Compute embeddings
|
| 66 |
status = "Computing embeddings for Dataset 1..."
|
| 67 |
yield status, ""
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
embeddings.append(batch_embeddings)
|
| 75 |
-
|
| 76 |
-
embedding_matrix = np.concatenate(embeddings, axis=0)
|
| 77 |
|
| 78 |
# Deduplicate
|
| 79 |
status = "Deduplicating embeddings..."
|
|
@@ -89,7 +146,9 @@ def perform_deduplication(
|
|
| 89 |
|
| 90 |
result_text = f"**Total documents:** {num_total}\n"
|
| 91 |
result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
| 92 |
-
result_text +=
|
|
|
|
|
|
|
| 93 |
|
| 94 |
# Show deduplicated examples
|
| 95 |
if num_duplicates > 0:
|
|
@@ -119,49 +178,13 @@ def perform_deduplication(
|
|
| 119 |
yield f"An error occurred: {e}", ""
|
| 120 |
raise e
|
| 121 |
|
| 122 |
-
|
| 123 |
-
def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[np.ndarray, dict[int, int]]:
|
| 124 |
-
"""
|
| 125 |
-
Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
|
| 126 |
-
"""
|
| 127 |
-
# Building the index
|
| 128 |
-
progress(0, desc="Building search index...")
|
| 129 |
-
reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
|
| 130 |
-
|
| 131 |
-
deduplicated_indices = set(range(len(embedding_matrix)))
|
| 132 |
-
duplicate_to_original_mapping = {}
|
| 133 |
-
|
| 134 |
-
# Finding nearest neighbors
|
| 135 |
-
progress(0, desc="Finding nearest neighbors...")
|
| 136 |
-
results = reach.nearest_neighbor_threshold(
|
| 137 |
-
embedding_matrix,
|
| 138 |
-
threshold=threshold,
|
| 139 |
-
batch_size=batch_size,
|
| 140 |
-
show_progressbar=False # Disable internal progress bar
|
| 141 |
-
)
|
| 142 |
-
|
| 143 |
-
# Processing duplicates with a progress bar
|
| 144 |
-
total_items = len(embedding_matrix)
|
| 145 |
-
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=total_items)):
|
| 146 |
-
if i not in deduplicated_indices:
|
| 147 |
-
continue
|
| 148 |
-
|
| 149 |
-
similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
|
| 150 |
-
|
| 151 |
-
for sim_idx in similar_indices:
|
| 152 |
-
if sim_idx in deduplicated_indices:
|
| 153 |
-
deduplicated_indices.remove(sim_idx)
|
| 154 |
-
duplicate_to_original_mapping[sim_idx] = i
|
| 155 |
-
|
| 156 |
-
return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
|
| 157 |
-
|
| 158 |
with gr.Blocks() as demo:
|
| 159 |
gr.Markdown("# Semantic Deduplication")
|
| 160 |
|
| 161 |
deduplication_type = gr.Radio(
|
| 162 |
choices=["Single dataset", "Cross-dataset"],
|
| 163 |
label="Deduplication Type",
|
| 164 |
-
value="Single dataset"
|
| 165 |
)
|
| 166 |
|
| 167 |
with gr.Row():
|
|
@@ -178,10 +201,7 @@ with gr.Blocks() as demo:
|
|
| 178 |
dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
| 179 |
|
| 180 |
threshold = gr.Slider(
|
| 181 |
-
minimum=0.0,
|
| 182 |
-
maximum=1.0,
|
| 183 |
-
value=default_threshold,
|
| 184 |
-
label="Similarity Threshold"
|
| 185 |
)
|
| 186 |
|
| 187 |
compute_button = gr.Button("Compute")
|
|
@@ -197,9 +217,7 @@ with gr.Blocks() as demo:
|
|
| 197 |
return gr.update(visible=False)
|
| 198 |
|
| 199 |
deduplication_type.change(
|
| 200 |
-
update_visibility,
|
| 201 |
-
inputs=deduplication_type,
|
| 202 |
-
outputs=dataset2_inputs
|
| 203 |
)
|
| 204 |
|
| 205 |
compute_button.click(
|
|
@@ -212,9 +230,9 @@ with gr.Blocks() as demo:
|
|
| 212 |
dataset2_name,
|
| 213 |
dataset2_split,
|
| 214 |
dataset2_text_column,
|
| 215 |
-
threshold
|
| 216 |
],
|
| 217 |
-
outputs=[status_output, result_output]
|
| 218 |
)
|
| 219 |
|
| 220 |
demo.launch()
|
|
|
|
| 4 |
from model2vec import StaticModel
|
| 5 |
from reach import Reach
|
| 6 |
from difflib import ndiff
|
| 7 |
+
import tqdm
|
| 8 |
+
from contextlib import contextmanager
|
| 9 |
|
| 10 |
# Load the model at startup
|
| 11 |
model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
|
|
|
| 27 |
for i in range(0, len(iterable), batch_size):
|
| 28 |
yield iterable[i:i + batch_size]
|
| 29 |
|
| 30 |
+
@contextmanager
|
| 31 |
+
def tqdm_redirect(progress):
|
| 32 |
+
original_tqdm = tqdm.tqdm
|
| 33 |
+
try:
|
| 34 |
+
tqdm.tqdm = progress.tqdm
|
| 35 |
+
yield
|
| 36 |
+
finally:
|
| 37 |
+
tqdm.tqdm = original_tqdm
|
| 38 |
+
|
| 39 |
+
def compute_embeddings(texts, batch_size, progress, desc="Computing embeddings"):
|
| 40 |
+
with tqdm_redirect(progress):
|
| 41 |
+
embeddings = model.encode(texts, show_progressbar=True, batch_size=batch_size)
|
| 42 |
+
return embeddings
|
| 43 |
+
|
| 44 |
+
def deduplicate(
|
| 45 |
+
embedding_matrix: np.ndarray,
|
| 46 |
+
threshold: float,
|
| 47 |
+
batch_size: int = 1024,
|
| 48 |
+
progress=None
|
| 49 |
+
) -> tuple[np.ndarray, dict[int, int]]:
|
| 50 |
+
# Existing deduplication code remains unchanged
|
| 51 |
+
# Building the index
|
| 52 |
+
progress(0, desc="Building search index...")
|
| 53 |
+
reach = Reach(
|
| 54 |
+
vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))]
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
deduplicated_indices = set(range(len(embedding_matrix)))
|
| 58 |
+
duplicate_to_original_mapping = {}
|
| 59 |
+
|
| 60 |
+
# Finding nearest neighbors
|
| 61 |
+
progress(0, desc="Finding nearest neighbors...")
|
| 62 |
+
results = reach.nearest_neighbor_threshold(
|
| 63 |
+
embedding_matrix,
|
| 64 |
+
threshold=threshold,
|
| 65 |
+
batch_size=batch_size,
|
| 66 |
+
show_progressbar=False, # Disable internal progress bar
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
# Processing duplicates with a progress bar
|
| 70 |
+
total_items = len(embedding_matrix)
|
| 71 |
+
for i, similar_items in enumerate(
|
| 72 |
+
progress.tqdm(results, desc="Processing duplicates", total=total_items)
|
| 73 |
+
):
|
| 74 |
+
if i not in deduplicated_indices:
|
| 75 |
+
continue
|
| 76 |
+
|
| 77 |
+
similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
|
| 78 |
+
|
| 79 |
+
for sim_idx in similar_indices:
|
| 80 |
+
if sim_idx in deduplicated_indices:
|
| 81 |
+
deduplicated_indices.remove(sim_idx)
|
| 82 |
+
duplicate_to_original_mapping[sim_idx] = i
|
| 83 |
+
|
| 84 |
+
return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
|
| 85 |
+
|
| 86 |
def display_word_differences(x: str, y: str) -> str:
|
| 87 |
diff = ndiff(x.split(), y.split())
|
| 88 |
+
return " ".join([word for word in diff if word.startswith(("+", "-"))])
|
| 89 |
|
| 90 |
def perform_deduplication(
|
| 91 |
deduplication_type,
|
|
|
|
| 96 |
dataset2_split="",
|
| 97 |
dataset2_text_column="",
|
| 98 |
threshold=default_threshold,
|
| 99 |
+
progress=gr.Progress(track_tqdm=True),
|
| 100 |
):
|
| 101 |
try:
|
| 102 |
# Convert threshold to float
|
|
|
|
| 109 |
# Load Dataset 1
|
| 110 |
status = "Loading Dataset 1..."
|
| 111 |
yield status, ""
|
| 112 |
+
if (
|
| 113 |
+
dataset1_name == default_dataset1_name
|
| 114 |
+
and dataset1_split == default_dataset1_split
|
| 115 |
+
):
|
| 116 |
ds = ds_default1
|
| 117 |
else:
|
| 118 |
ds = load_dataset(dataset1_name, split=dataset1_split)
|
|
|
|
| 125 |
# Compute embeddings
|
| 126 |
status = "Computing embeddings for Dataset 1..."
|
| 127 |
yield status, ""
|
| 128 |
+
embedding_matrix = compute_embeddings(
|
| 129 |
+
texts,
|
| 130 |
+
batch_size=64,
|
| 131 |
+
progress=progress,
|
| 132 |
+
desc="Computing embeddings for Dataset 1",
|
| 133 |
+
)
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
# Deduplicate
|
| 136 |
status = "Deduplicating embeddings..."
|
|
|
|
| 146 |
|
| 147 |
result_text = f"**Total documents:** {num_total}\n"
|
| 148 |
result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
| 149 |
+
result_text += (
|
| 150 |
+
f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
|
| 151 |
+
)
|
| 152 |
|
| 153 |
# Show deduplicated examples
|
| 154 |
if num_duplicates > 0:
|
|
|
|
| 178 |
yield f"An error occurred: {e}", ""
|
| 179 |
raise e
|
| 180 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
with gr.Blocks() as demo:
|
| 182 |
gr.Markdown("# Semantic Deduplication")
|
| 183 |
|
| 184 |
deduplication_type = gr.Radio(
|
| 185 |
choices=["Single dataset", "Cross-dataset"],
|
| 186 |
label="Deduplication Type",
|
| 187 |
+
value="Single dataset",
|
| 188 |
)
|
| 189 |
|
| 190 |
with gr.Row():
|
|
|
|
| 201 |
dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
| 202 |
|
| 203 |
threshold = gr.Slider(
|
| 204 |
+
minimum=0.0, maximum=1.0, value=default_threshold, label="Similarity Threshold"
|
|
|
|
|
|
|
|
|
|
| 205 |
)
|
| 206 |
|
| 207 |
compute_button = gr.Button("Compute")
|
|
|
|
| 217 |
return gr.update(visible=False)
|
| 218 |
|
| 219 |
deduplication_type.change(
|
| 220 |
+
update_visibility, inputs=deduplication_type, outputs=dataset2_inputs
|
|
|
|
|
|
|
| 221 |
)
|
| 222 |
|
| 223 |
compute_button.click(
|
|
|
|
| 230 |
dataset2_name,
|
| 231 |
dataset2_split,
|
| 232 |
dataset2_text_column,
|
| 233 |
+
threshold,
|
| 234 |
],
|
| 235 |
+
outputs=[status_output, result_output],
|
| 236 |
)
|
| 237 |
|
| 238 |
demo.launch()
|