Updated app with code for deduplication
Browse files
app.py
CHANGED
|
@@ -6,6 +6,7 @@ from reach import Reach
|
|
| 6 |
from difflib import ndiff
|
| 7 |
import sys
|
| 8 |
import tqdm
|
|
|
|
| 9 |
|
| 10 |
# Load the model at startup
|
| 11 |
model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
|
@@ -26,13 +27,13 @@ def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int
|
|
| 26 |
"""
|
| 27 |
Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
|
| 28 |
"""
|
| 29 |
-
#
|
| 30 |
reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
|
| 31 |
|
| 32 |
deduplicated_indices = set(range(len(embedding_matrix)))
|
| 33 |
duplicate_to_original_mapping = {}
|
| 34 |
|
| 35 |
-
#
|
| 36 |
results = reach.nearest_neighbor_threshold(
|
| 37 |
embedding_matrix,
|
| 38 |
threshold=threshold,
|
|
@@ -40,7 +41,7 @@ def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int
|
|
| 40 |
show_progressbar=True # Allow internal progress bar
|
| 41 |
)
|
| 42 |
|
| 43 |
-
#
|
| 44 |
for i, similar_items in enumerate(results):
|
| 45 |
if i not in deduplicated_indices:
|
| 46 |
continue
|
|
@@ -58,13 +59,13 @@ def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix
|
|
| 58 |
"""
|
| 59 |
Deduplicate embeddings across two datasets and return the indices of duplicates between them.
|
| 60 |
"""
|
| 61 |
-
#
|
| 62 |
reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))])
|
| 63 |
|
| 64 |
duplicate_indices_in_test = []
|
| 65 |
duplicate_to_original_mapping = {}
|
| 66 |
|
| 67 |
-
#
|
| 68 |
results = reach.nearest_neighbor_threshold(
|
| 69 |
embedding_matrix_2,
|
| 70 |
threshold=threshold,
|
|
@@ -72,7 +73,7 @@ def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix
|
|
| 72 |
show_progressbar=True # Allow internal progress bar
|
| 73 |
)
|
| 74 |
|
| 75 |
-
#
|
| 76 |
for i, similar_items in enumerate(results):
|
| 77 |
similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
|
| 78 |
|
|
@@ -103,9 +104,9 @@ def perform_deduplication(
|
|
| 103 |
super().__init__(*args, **kwargs)
|
| 104 |
|
| 105 |
# Copy module-level attributes from original tqdm module
|
| 106 |
-
TqdmWrapper.format_interval = staticmethod(
|
| 107 |
-
TqdmWrapper.format_num = staticmethod(
|
| 108 |
-
TqdmWrapper.format_sizeof = staticmethod(
|
| 109 |
|
| 110 |
# Monkey-patch tqdm.tqdm with our wrapper
|
| 111 |
original_tqdm_tqdm = tqdm.tqdm
|
|
@@ -313,12 +314,12 @@ with gr.Blocks() as demo:
|
|
| 313 |
compute_button.click(
|
| 314 |
fn=perform_deduplication,
|
| 315 |
inputs=[
|
| 316 |
-
deduplication_type,
|
| 317 |
-
dataset1_name,
|
| 318 |
-
dataset1_split,
|
| 319 |
dataset1_text_column,
|
| 320 |
-
dataset2_name,
|
| 321 |
-
dataset2_split,
|
| 322 |
dataset2_text_column,
|
| 323 |
threshold
|
| 324 |
],
|
|
@@ -328,6 +329,7 @@ with gr.Blocks() as demo:
|
|
| 328 |
demo.launch()
|
| 329 |
|
| 330 |
|
|
|
|
| 331 |
# import gradio as gr
|
| 332 |
# from datasets import load_dataset
|
| 333 |
# import numpy as np
|
|
|
|
| 6 |
from difflib import ndiff
|
| 7 |
import sys
|
| 8 |
import tqdm
|
| 9 |
+
from tqdm.utils import format_interval, format_num, format_sizeof
|
| 10 |
|
| 11 |
# Load the model at startup
|
| 12 |
model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
|
|
|
| 27 |
"""
|
| 28 |
Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
|
| 29 |
"""
|
| 30 |
+
# Building the index
|
| 31 |
reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
|
| 32 |
|
| 33 |
deduplicated_indices = set(range(len(embedding_matrix)))
|
| 34 |
duplicate_to_original_mapping = {}
|
| 35 |
|
| 36 |
+
# Finding nearest neighbors
|
| 37 |
results = reach.nearest_neighbor_threshold(
|
| 38 |
embedding_matrix,
|
| 39 |
threshold=threshold,
|
|
|
|
| 41 |
show_progressbar=True # Allow internal progress bar
|
| 42 |
)
|
| 43 |
|
| 44 |
+
# Processing duplicates
|
| 45 |
for i, similar_items in enumerate(results):
|
| 46 |
if i not in deduplicated_indices:
|
| 47 |
continue
|
|
|
|
| 59 |
"""
|
| 60 |
Deduplicate embeddings across two datasets and return the indices of duplicates between them.
|
| 61 |
"""
|
| 62 |
+
# Building the index from Dataset 1
|
| 63 |
reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))])
|
| 64 |
|
| 65 |
duplicate_indices_in_test = []
|
| 66 |
duplicate_to_original_mapping = {}
|
| 67 |
|
| 68 |
+
# Finding nearest neighbors between datasets
|
| 69 |
results = reach.nearest_neighbor_threshold(
|
| 70 |
embedding_matrix_2,
|
| 71 |
threshold=threshold,
|
|
|
|
| 73 |
show_progressbar=True # Allow internal progress bar
|
| 74 |
)
|
| 75 |
|
| 76 |
+
# Processing duplicates
|
| 77 |
for i, similar_items in enumerate(results):
|
| 78 |
similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
|
| 79 |
|
|
|
|
| 104 |
super().__init__(*args, **kwargs)
|
| 105 |
|
| 106 |
# Copy module-level attributes from original tqdm module
|
| 107 |
+
TqdmWrapper.format_interval = staticmethod(format_interval)
|
| 108 |
+
TqdmWrapper.format_num = staticmethod(format_num)
|
| 109 |
+
TqdmWrapper.format_sizeof = staticmethod(format_sizeof)
|
| 110 |
|
| 111 |
# Monkey-patch tqdm.tqdm with our wrapper
|
| 112 |
original_tqdm_tqdm = tqdm.tqdm
|
|
|
|
| 314 |
compute_button.click(
|
| 315 |
fn=perform_deduplication,
|
| 316 |
inputs=[
|
| 317 |
+
deduplication_type,
|
| 318 |
+
dataset1_name,
|
| 319 |
+
dataset1_split,
|
| 320 |
dataset1_text_column,
|
| 321 |
+
dataset2_name,
|
| 322 |
+
dataset2_split,
|
| 323 |
dataset2_text_column,
|
| 324 |
threshold
|
| 325 |
],
|
|
|
|
| 329 |
demo.launch()
|
| 330 |
|
| 331 |
|
| 332 |
+
|
| 333 |
# import gradio as gr
|
| 334 |
# from datasets import load_dataset
|
| 335 |
# import numpy as np
|