Updated app with code for deduplication
Browse files
app.py
CHANGED
|
@@ -3,10 +3,9 @@ from datasets import load_dataset
|
|
| 3 |
import numpy as np
|
| 4 |
from model2vec import StaticModel
|
| 5 |
from reach import Reach
|
| 6 |
-
from tqdm import tqdm
|
| 7 |
from difflib import ndiff
|
| 8 |
|
| 9 |
-
def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int = 1024) -> tuple[np.ndarray, dict[int, int]]:
|
| 10 |
"""
|
| 11 |
Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
|
| 12 |
"""
|
|
@@ -24,7 +23,7 @@ def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int
|
|
| 24 |
)
|
| 25 |
|
| 26 |
# Process duplicates
|
| 27 |
-
for i, similar_items in enumerate(tqdm(results)):
|
| 28 |
if i not in deduplicated_indices:
|
| 29 |
continue # Skip already marked duplicates
|
| 30 |
|
|
@@ -39,7 +38,7 @@ def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int
|
|
| 39 |
|
| 40 |
return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
|
| 41 |
|
| 42 |
-
def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix_2: np.ndarray, threshold: float, batch_size: int = 1024) -> tuple[list[int], dict[int, int]]:
|
| 43 |
"""
|
| 44 |
Deduplicate embeddings across two datasets and return the indices of duplicates between them.
|
| 45 |
"""
|
|
@@ -58,7 +57,7 @@ def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix
|
|
| 58 |
)
|
| 59 |
|
| 60 |
# Process duplicates
|
| 61 |
-
for i, similar_items in enumerate(tqdm(results)):
|
| 62 |
# Similar items are returned as (index, score), we are only interested in the index
|
| 63 |
similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold] # Keep those above the threshold
|
| 64 |
|
|
@@ -71,7 +70,7 @@ def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix
|
|
| 71 |
|
| 72 |
def display_word_differences(x: str, y: str) -> str:
|
| 73 |
diff = ndiff(x.split(), y.split())
|
| 74 |
-
return " ".join([
|
| 75 |
|
| 76 |
def perform_deduplication(
|
| 77 |
deduplication_type,
|
|
@@ -81,7 +80,8 @@ def perform_deduplication(
|
|
| 81 |
dataset2_name,
|
| 82 |
dataset2_split,
|
| 83 |
dataset2_text_column,
|
| 84 |
-
threshold
|
|
|
|
| 85 |
):
|
| 86 |
# Convert threshold to float
|
| 87 |
threshold = float(threshold)
|
|
@@ -98,8 +98,7 @@ def perform_deduplication(
|
|
| 98 |
embedding_matrix = model.encode(texts, show_progressbar=True)
|
| 99 |
|
| 100 |
# Deduplicate
|
| 101 |
-
|
| 102 |
-
deduplicated_indices, duplicate_to_original_mapping = deduplicate(embedding_matrix, threshold)
|
| 103 |
|
| 104 |
# Prepare the results
|
| 105 |
num_duplicates = len(duplicate_to_original_mapping)
|
|
@@ -114,9 +113,7 @@ def perform_deduplication(
|
|
| 114 |
result_text += "**Examples of duplicates found:**\n\n"
|
| 115 |
num_examples = min(5, num_duplicates)
|
| 116 |
examples_shown = 0
|
| 117 |
-
for duplicate_idx, original_idx in duplicate_to_original_mapping.items():
|
| 118 |
-
if examples_shown >= num_examples:
|
| 119 |
-
break
|
| 120 |
original_text = texts[original_idx]
|
| 121 |
duplicate_text = texts[duplicate_idx]
|
| 122 |
differences = display_word_differences(original_text, duplicate_text)
|
|
@@ -143,8 +140,7 @@ def perform_deduplication(
|
|
| 143 |
embedding_matrix2 = model.encode(texts2, show_progressbar=True)
|
| 144 |
|
| 145 |
# Deduplicate across datasets
|
| 146 |
-
|
| 147 |
-
duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(embedding_matrix1, embedding_matrix2, threshold)
|
| 148 |
|
| 149 |
num_duplicates = len(duplicate_indices_in_ds2)
|
| 150 |
num_total_ds2 = len(texts2)
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
from model2vec import StaticModel
|
| 5 |
from reach import Reach
|
|
|
|
| 6 |
from difflib import ndiff
|
| 7 |
|
| 8 |
+
def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int = 1024, progress=gr.Progress(track_tqdm=True)) -> tuple[np.ndarray, dict[int, int]]:
|
| 9 |
"""
|
| 10 |
Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
|
| 11 |
"""
|
|
|
|
| 23 |
)
|
| 24 |
|
| 25 |
# Process duplicates
|
| 26 |
+
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates")):
|
| 27 |
if i not in deduplicated_indices:
|
| 28 |
continue # Skip already marked duplicates
|
| 29 |
|
|
|
|
| 38 |
|
| 39 |
return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
|
| 40 |
|
| 41 |
+
def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix_2: np.ndarray, threshold: float, batch_size: int = 1024, progress=gr.Progress(track_tqdm=True)) -> tuple[list[int], dict[int, int]]:
|
| 42 |
"""
|
| 43 |
Deduplicate embeddings across two datasets and return the indices of duplicates between them.
|
| 44 |
"""
|
|
|
|
| 57 |
)
|
| 58 |
|
| 59 |
# Process duplicates
|
| 60 |
+
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates across datasets")):
|
| 61 |
# Similar items are returned as (index, score), we are only interested in the index
|
| 62 |
similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold] # Keep those above the threshold
|
| 63 |
|
|
|
|
| 70 |
|
| 71 |
def display_word_differences(x: str, y: str) -> str:
|
| 72 |
diff = ndiff(x.split(), y.split())
|
| 73 |
+
return " ".join([word for word in diff if word.startswith(('+', '-'))])
|
| 74 |
|
| 75 |
def perform_deduplication(
|
| 76 |
deduplication_type,
|
|
|
|
| 80 |
dataset2_name,
|
| 81 |
dataset2_split,
|
| 82 |
dataset2_text_column,
|
| 83 |
+
threshold,
|
| 84 |
+
progress=gr.Progress(track_tqdm=True)
|
| 85 |
):
|
| 86 |
# Convert threshold to float
|
| 87 |
threshold = float(threshold)
|
|
|
|
| 98 |
embedding_matrix = model.encode(texts, show_progressbar=True)
|
| 99 |
|
| 100 |
# Deduplicate
|
| 101 |
+
deduplicated_indices, duplicate_to_original_mapping = deduplicate(embedding_matrix, threshold, progress=progress)
|
|
|
|
| 102 |
|
| 103 |
# Prepare the results
|
| 104 |
num_duplicates = len(duplicate_to_original_mapping)
|
|
|
|
| 113 |
result_text += "**Examples of duplicates found:**\n\n"
|
| 114 |
num_examples = min(5, num_duplicates)
|
| 115 |
examples_shown = 0
|
| 116 |
+
for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
|
|
|
|
|
|
|
| 117 |
original_text = texts[original_idx]
|
| 118 |
duplicate_text = texts[duplicate_idx]
|
| 119 |
differences = display_word_differences(original_text, duplicate_text)
|
|
|
|
| 140 |
embedding_matrix2 = model.encode(texts2, show_progressbar=True)
|
| 141 |
|
| 142 |
# Deduplicate across datasets
|
| 143 |
+
duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(embedding_matrix1, embedding_matrix2, threshold, progress=progress)
|
|
|
|
| 144 |
|
| 145 |
num_duplicates = len(duplicate_indices_in_ds2)
|
| 146 |
num_total_ds2 = len(texts2)
|