Updated app with code for deduplication
Browse files
app.py
CHANGED
|
@@ -4,67 +4,74 @@ import numpy as np
|
|
| 4 |
from model2vec import StaticModel
|
| 5 |
from reach import Reach
|
| 6 |
from difflib import ndiff
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
"""
|
| 10 |
Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
|
| 11 |
"""
|
| 12 |
reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
|
| 13 |
|
| 14 |
-
|
| 15 |
-
deduplicated_indices = set(range(len(embedding_matrix))) # Start with all indices as deduplicated
|
| 16 |
duplicate_to_original_mapping = {}
|
| 17 |
|
| 18 |
results = reach.nearest_neighbor_threshold(
|
| 19 |
-
embedding_matrix,
|
| 20 |
-
threshold=threshold,
|
| 21 |
-
batch_size=batch_size,
|
| 22 |
-
show_progressbar=
|
| 23 |
)
|
| 24 |
|
| 25 |
# Process duplicates
|
| 26 |
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates")):
|
| 27 |
if i not in deduplicated_indices:
|
| 28 |
-
continue
|
| 29 |
|
| 30 |
-
# Similar items are returned as (index, score), we are only interested in the index
|
| 31 |
similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
|
| 32 |
|
| 33 |
-
# Mark similar documents as duplicates and map them to the original
|
| 34 |
for sim_idx in similar_indices:
|
| 35 |
if sim_idx in deduplicated_indices:
|
| 36 |
deduplicated_indices.remove(sim_idx)
|
| 37 |
-
duplicate_to_original_mapping[sim_idx] = i
|
| 38 |
|
| 39 |
return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
|
| 40 |
|
| 41 |
-
def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix_2: np.ndarray, threshold: float, batch_size: int = 1024, progress=
|
| 42 |
"""
|
| 43 |
Deduplicate embeddings across two datasets and return the indices of duplicates between them.
|
| 44 |
"""
|
| 45 |
reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))])
|
| 46 |
|
| 47 |
-
# Keep track of duplicates in the second dataset
|
| 48 |
duplicate_indices_in_test = []
|
| 49 |
duplicate_to_original_mapping = {}
|
| 50 |
|
| 51 |
-
# Find nearest neighbors from the test set in the train set
|
| 52 |
results = reach.nearest_neighbor_threshold(
|
| 53 |
-
embedding_matrix_2,
|
| 54 |
-
threshold=threshold,
|
| 55 |
-
batch_size=batch_size,
|
| 56 |
-
show_progressbar=
|
| 57 |
)
|
| 58 |
|
| 59 |
# Process duplicates
|
| 60 |
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates across datasets")):
|
| 61 |
-
|
| 62 |
-
similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold] # Keep those above the threshold
|
| 63 |
|
| 64 |
-
# If we find a similar item in the train set, mark it as a duplicate
|
| 65 |
if similar_indices:
|
| 66 |
duplicate_indices_in_test.append(i)
|
| 67 |
-
duplicate_to_original_mapping[i] = similar_indices[0]
|
| 68 |
|
| 69 |
return duplicate_indices_in_test, duplicate_to_original_mapping
|
| 70 |
|
|
@@ -83,85 +90,114 @@ def perform_deduplication(
|
|
| 83 |
threshold=0.8,
|
| 84 |
progress=gr.Progress(track_tqdm=True)
|
| 85 |
):
|
| 86 |
-
#
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
#
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
result_text
|
| 121 |
-
result_text += f"**
|
| 122 |
-
result_text += "
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
with gr.Blocks() as demo:
|
| 167 |
gr.Markdown("# Semantic Deduplication")
|
|
@@ -225,3 +261,232 @@ with gr.Blocks() as demo:
|
|
| 225 |
)
|
| 226 |
|
| 227 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from model2vec import StaticModel
|
| 5 |
from reach import Reach
|
| 6 |
from difflib import ndiff
|
| 7 |
+
import sys
|
| 8 |
+
import tqdm
|
| 9 |
|
| 10 |
+
# Load the model at startup
|
| 11 |
+
model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
| 12 |
+
|
| 13 |
+
# Load the default datasets at startup
|
| 14 |
+
default_dataset1_name = "ag_news"
|
| 15 |
+
default_dataset1_split = "train"
|
| 16 |
+
default_dataset2_name = "ag_news"
|
| 17 |
+
default_dataset2_split = "test"
|
| 18 |
+
|
| 19 |
+
ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
|
| 20 |
+
ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)
|
| 21 |
+
|
| 22 |
+
def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[np.ndarray, dict[int, int]]:
|
| 23 |
"""
|
| 24 |
Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
|
| 25 |
"""
|
| 26 |
reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
|
| 27 |
|
| 28 |
+
deduplicated_indices = set(range(len(embedding_matrix)))
|
|
|
|
| 29 |
duplicate_to_original_mapping = {}
|
| 30 |
|
| 31 |
results = reach.nearest_neighbor_threshold(
|
| 32 |
+
embedding_matrix,
|
| 33 |
+
threshold=threshold,
|
| 34 |
+
batch_size=batch_size,
|
| 35 |
+
show_progressbar=False # Disable internal progress bar
|
| 36 |
)
|
| 37 |
|
| 38 |
# Process duplicates
|
| 39 |
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates")):
|
| 40 |
if i not in deduplicated_indices:
|
| 41 |
+
continue
|
| 42 |
|
|
|
|
| 43 |
similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
|
| 44 |
|
|
|
|
| 45 |
for sim_idx in similar_indices:
|
| 46 |
if sim_idx in deduplicated_indices:
|
| 47 |
deduplicated_indices.remove(sim_idx)
|
| 48 |
+
duplicate_to_original_mapping[sim_idx] = i
|
| 49 |
|
| 50 |
return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
|
| 51 |
|
| 52 |
+
def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix_2: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[list[int], dict[int, int]]:
|
| 53 |
"""
|
| 54 |
Deduplicate embeddings across two datasets and return the indices of duplicates between them.
|
| 55 |
"""
|
| 56 |
reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))])
|
| 57 |
|
|
|
|
| 58 |
duplicate_indices_in_test = []
|
| 59 |
duplicate_to_original_mapping = {}
|
| 60 |
|
|
|
|
| 61 |
results = reach.nearest_neighbor_threshold(
|
| 62 |
+
embedding_matrix_2,
|
| 63 |
+
threshold=threshold,
|
| 64 |
+
batch_size=batch_size,
|
| 65 |
+
show_progressbar=False # Disable internal progress bar
|
| 66 |
)
|
| 67 |
|
| 68 |
# Process duplicates
|
| 69 |
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates across datasets")):
|
| 70 |
+
similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
|
|
|
|
| 71 |
|
|
|
|
| 72 |
if similar_indices:
|
| 73 |
duplicate_indices_in_test.append(i)
|
| 74 |
+
duplicate_to_original_mapping[i] = similar_indices[0]
|
| 75 |
|
| 76 |
return duplicate_indices_in_test, duplicate_to_original_mapping
|
| 77 |
|
|
|
|
| 90 |
threshold=0.8,
|
| 91 |
progress=gr.Progress(track_tqdm=True)
|
| 92 |
):
|
| 93 |
+
# Monkey-patch tqdm
|
| 94 |
+
original_tqdm = tqdm.tqdm
|
| 95 |
+
tqdm.tqdm = progress.tqdm
|
| 96 |
+
sys.modules['tqdm'].tqdm = progress.tqdm
|
| 97 |
+
sys.modules['tqdm.auto'].tqdm = progress.tqdm
|
| 98 |
+
|
| 99 |
+
try:
|
| 100 |
+
# Convert threshold to float
|
| 101 |
+
threshold = float(threshold)
|
| 102 |
+
|
| 103 |
+
if deduplication_type == "Single dataset":
|
| 104 |
+
# Check if the dataset is the default one
|
| 105 |
+
if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
|
| 106 |
+
ds = ds_default1
|
| 107 |
+
else:
|
| 108 |
+
ds = load_dataset(dataset1_name, split=dataset1_split)
|
| 109 |
+
|
| 110 |
+
# Extract texts
|
| 111 |
+
texts = [example[dataset1_text_column] for example in ds]
|
| 112 |
+
|
| 113 |
+
# Compute embeddings
|
| 114 |
+
embedding_matrix = model.encode(texts, show_progressbar=False) # Disable internal progress bar
|
| 115 |
+
|
| 116 |
+
# Show progress bar for embedding computation
|
| 117 |
+
embedding_matrix = progress.tqdm(embedding_matrix, desc="Computing embeddings")
|
| 118 |
+
|
| 119 |
+
# Deduplicate
|
| 120 |
+
deduplicated_indices, duplicate_to_original_mapping = deduplicate(embedding_matrix, threshold, progress=progress)
|
| 121 |
+
|
| 122 |
+
# Prepare the results
|
| 123 |
+
num_duplicates = len(duplicate_to_original_mapping)
|
| 124 |
+
num_total = len(texts)
|
| 125 |
+
num_deduplicated = len(deduplicated_indices)
|
| 126 |
+
|
| 127 |
+
result_text = f"**Total documents:** {num_total}\n"
|
| 128 |
+
result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
| 129 |
+
result_text += f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
|
| 130 |
+
|
| 131 |
+
# Show deduplicated examples
|
| 132 |
+
result_text += "**Examples of duplicates found:**\n\n"
|
| 133 |
+
num_examples = min(5, num_duplicates)
|
| 134 |
+
for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
|
| 135 |
+
original_text = texts[original_idx]
|
| 136 |
+
duplicate_text = texts[duplicate_idx]
|
| 137 |
+
differences = display_word_differences(original_text, duplicate_text)
|
| 138 |
+
result_text += f"**Original text:**\n{original_text}\n\n"
|
| 139 |
+
result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
|
| 140 |
+
result_text += f"**Differences:**\n{differences}\n"
|
| 141 |
+
result_text += "-" * 50 + "\n\n"
|
| 142 |
+
|
| 143 |
+
return result_text
|
| 144 |
+
|
| 145 |
+
elif deduplication_type == "Cross-dataset":
|
| 146 |
+
# Dataset 1
|
| 147 |
+
if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
|
| 148 |
+
ds1 = ds_default1
|
| 149 |
+
else:
|
| 150 |
+
ds1 = load_dataset(dataset1_name, split=dataset1_split)
|
| 151 |
+
|
| 152 |
+
# Dataset 2
|
| 153 |
+
if dataset2_name == default_dataset2_name and dataset2_split == default_dataset2_split:
|
| 154 |
+
ds2 = ds_default2
|
| 155 |
+
else:
|
| 156 |
+
ds2 = load_dataset(dataset2_name, split=dataset2_split)
|
| 157 |
+
|
| 158 |
+
# Extract texts
|
| 159 |
+
texts1 = [example[dataset1_text_column] for example in ds1]
|
| 160 |
+
texts2 = [example[dataset2_text_column] for example in ds2]
|
| 161 |
+
|
| 162 |
+
# Compute embeddings
|
| 163 |
+
embedding_matrix1 = model.encode(texts1, show_progressbar=False) # Disable internal progress bar
|
| 164 |
+
embedding_matrix2 = model.encode(texts2, show_progressbar=False) # Disable internal progress bar
|
| 165 |
+
|
| 166 |
+
# Show progress bar for embedding computation
|
| 167 |
+
embedding_matrix1 = progress.tqdm(embedding_matrix1, desc="Computing embeddings for Dataset 1")
|
| 168 |
+
embedding_matrix2 = progress.tqdm(embedding_matrix2, desc="Computing embeddings for Dataset 2")
|
| 169 |
+
|
| 170 |
+
# Deduplicate across datasets
|
| 171 |
+
duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(embedding_matrix1, embedding_matrix2, threshold, progress=progress)
|
| 172 |
+
|
| 173 |
+
num_duplicates = len(duplicate_indices_in_ds2)
|
| 174 |
+
num_total_ds2 = len(texts2)
|
| 175 |
+
num_unique_ds2 = num_total_ds2 - num_duplicates
|
| 176 |
+
|
| 177 |
+
result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n"
|
| 178 |
+
result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
|
| 179 |
+
result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
|
| 180 |
+
|
| 181 |
+
# Show deduplicated examples
|
| 182 |
+
result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
|
| 183 |
+
num_examples = min(5, num_duplicates)
|
| 184 |
+
for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
|
| 185 |
+
original_idx = duplicate_to_original_mapping[duplicate_idx]
|
| 186 |
+
original_text = texts1[original_idx]
|
| 187 |
+
duplicate_text = texts2[duplicate_idx]
|
| 188 |
+
differences = display_word_differences(original_text, duplicate_text)
|
| 189 |
+
result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
|
| 190 |
+
result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
|
| 191 |
+
result_text += f"**Differences:**\n{differences}\n"
|
| 192 |
+
result_text += "-" * 50 + "\n\n"
|
| 193 |
+
|
| 194 |
+
return result_text
|
| 195 |
+
|
| 196 |
+
finally:
|
| 197 |
+
# Restore original tqdm
|
| 198 |
+
tqdm.tqdm = original_tqdm
|
| 199 |
+
sys.modules['tqdm'].tqdm = original_tqdm
|
| 200 |
+
sys.modules['tqdm.auto'].tqdm = original_tqdm
|
| 201 |
|
| 202 |
with gr.Blocks() as demo:
|
| 203 |
gr.Markdown("# Semantic Deduplication")
|
|
|
|
| 261 |
)
|
| 262 |
|
| 263 |
demo.launch()
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
# import gradio as gr
|
| 267 |
+
# from datasets import load_dataset
|
| 268 |
+
# import numpy as np
|
| 269 |
+
# from model2vec import StaticModel
|
| 270 |
+
# from reach import Reach
|
| 271 |
+
# from difflib import ndiff
|
| 272 |
+
|
| 273 |
+
# def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int = 1024, progress=gr.Progress(track_tqdm=True)) -> tuple[np.ndarray, dict[int, int]]:
|
| 274 |
+
# """
|
| 275 |
+
# Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
|
| 276 |
+
# """
|
| 277 |
+
# reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
|
| 278 |
+
|
| 279 |
+
# # Use a set for deduplicated indices and keep track of duplicates
|
| 280 |
+
# deduplicated_indices = set(range(len(embedding_matrix))) # Start with all indices as deduplicated
|
| 281 |
+
# duplicate_to_original_mapping = {}
|
| 282 |
+
|
| 283 |
+
# results = reach.nearest_neighbor_threshold(
|
| 284 |
+
# embedding_matrix,
|
| 285 |
+
# threshold=threshold,
|
| 286 |
+
# batch_size=batch_size,
|
| 287 |
+
# show_progressbar=True
|
| 288 |
+
# )
|
| 289 |
+
|
| 290 |
+
# # Process duplicates
|
| 291 |
+
# for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates")):
|
| 292 |
+
# if i not in deduplicated_indices:
|
| 293 |
+
# continue # Skip already marked duplicates
|
| 294 |
+
|
| 295 |
+
# # Similar items are returned as (index, score), we are only interested in the index
|
| 296 |
+
# similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
|
| 297 |
+
|
| 298 |
+
# # Mark similar documents as duplicates and map them to the original
|
| 299 |
+
# for sim_idx in similar_indices:
|
| 300 |
+
# if sim_idx in deduplicated_indices:
|
| 301 |
+
# deduplicated_indices.remove(sim_idx)
|
| 302 |
+
# duplicate_to_original_mapping[sim_idx] = i # Map duplicate to original
|
| 303 |
+
|
| 304 |
+
# return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
|
| 305 |
+
|
| 306 |
+
# def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix_2: np.ndarray, threshold: float, batch_size: int = 1024, progress=gr.Progress(track_tqdm=True)) -> tuple[list[int], dict[int, int]]:
|
| 307 |
+
# """
|
| 308 |
+
# Deduplicate embeddings across two datasets and return the indices of duplicates between them.
|
| 309 |
+
# """
|
| 310 |
+
# reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))])
|
| 311 |
+
|
| 312 |
+
# # Keep track of duplicates in the second dataset
|
| 313 |
+
# duplicate_indices_in_test = []
|
| 314 |
+
# duplicate_to_original_mapping = {}
|
| 315 |
+
|
| 316 |
+
# # Find nearest neighbors from the test set in the train set
|
| 317 |
+
# results = reach.nearest_neighbor_threshold(
|
| 318 |
+
# embedding_matrix_2,
|
| 319 |
+
# threshold=threshold,
|
| 320 |
+
# batch_size=batch_size,
|
| 321 |
+
# show_progressbar=True
|
| 322 |
+
# )
|
| 323 |
+
|
| 324 |
+
# # Process duplicates
|
| 325 |
+
# for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates across datasets")):
|
| 326 |
+
# # Similar items are returned as (index, score), we are only interested in the index
|
| 327 |
+
# similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold] # Keep those above the threshold
|
| 328 |
+
|
| 329 |
+
# # If we find a similar item in the train set, mark it as a duplicate
|
| 330 |
+
# if similar_indices:
|
| 331 |
+
# duplicate_indices_in_test.append(i)
|
| 332 |
+
# duplicate_to_original_mapping[i] = similar_indices[0] # Map duplicate in test to original in train
|
| 333 |
+
|
| 334 |
+
# return duplicate_indices_in_test, duplicate_to_original_mapping
|
| 335 |
+
|
| 336 |
+
# def display_word_differences(x: str, y: str) -> str:
|
| 337 |
+
# diff = ndiff(x.split(), y.split())
|
| 338 |
+
# return " ".join([word for word in diff if word.startswith(('+', '-'))])
|
| 339 |
+
|
| 340 |
+
# def perform_deduplication(
|
| 341 |
+
# deduplication_type,
|
| 342 |
+
# dataset1_name,
|
| 343 |
+
# dataset1_split,
|
| 344 |
+
# dataset1_text_column,
|
| 345 |
+
# dataset2_name="",
|
| 346 |
+
# dataset2_split="",
|
| 347 |
+
# dataset2_text_column="",
|
| 348 |
+
# threshold=0.8,
|
| 349 |
+
# progress=gr.Progress(track_tqdm=True)
|
| 350 |
+
# ):
|
| 351 |
+
# # Convert threshold to float
|
| 352 |
+
# threshold = float(threshold)
|
| 353 |
+
|
| 354 |
+
# if deduplication_type == "Single dataset":
|
| 355 |
+
# # Load the dataset
|
| 356 |
+
# ds = load_dataset(dataset1_name, split=dataset1_split)
|
| 357 |
+
|
| 358 |
+
# # Extract texts
|
| 359 |
+
# texts = [example[dataset1_text_column] for example in ds]
|
| 360 |
+
|
| 361 |
+
# # Compute embeddings
|
| 362 |
+
# model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
| 363 |
+
# embedding_matrix = model.encode(texts, show_progressbar=True)
|
| 364 |
+
|
| 365 |
+
# # Deduplicate
|
| 366 |
+
# deduplicated_indices, duplicate_to_original_mapping = deduplicate(embedding_matrix, threshold, progress=progress)
|
| 367 |
+
|
| 368 |
+
# # Prepare the results
|
| 369 |
+
# num_duplicates = len(duplicate_to_original_mapping)
|
| 370 |
+
# num_total = len(texts)
|
| 371 |
+
# num_deduplicated = len(deduplicated_indices)
|
| 372 |
+
|
| 373 |
+
# result_text = f"**Total documents:** {num_total}\n"
|
| 374 |
+
# result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
| 375 |
+
# result_text += f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
|
| 376 |
+
|
| 377 |
+
# # Show deduplicated examples
|
| 378 |
+
# result_text += "**Examples of duplicates found:**\n\n"
|
| 379 |
+
# num_examples = min(5, num_duplicates)
|
| 380 |
+
# for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
|
| 381 |
+
# original_text = texts[original_idx]
|
| 382 |
+
# duplicate_text = texts[duplicate_idx]
|
| 383 |
+
# differences = display_word_differences(original_text, duplicate_text)
|
| 384 |
+
# result_text += f"**Original text:**\n{original_text}\n\n"
|
| 385 |
+
# result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
|
| 386 |
+
# result_text += f"**Differences:**\n{differences}\n"
|
| 387 |
+
# result_text += "-" * 50 + "\n\n"
|
| 388 |
+
|
| 389 |
+
# return result_text
|
| 390 |
+
|
| 391 |
+
# elif deduplication_type == "Cross-dataset":
|
| 392 |
+
# # Load datasets
|
| 393 |
+
# ds1 = load_dataset(dataset1_name, split=dataset1_split)
|
| 394 |
+
# ds2 = load_dataset(dataset2_name, split=dataset2_split)
|
| 395 |
+
|
| 396 |
+
# # Extract texts
|
| 397 |
+
# texts1 = [example[dataset1_text_column] for example in ds1]
|
| 398 |
+
# texts2 = [example[dataset2_text_column] for example in ds2]
|
| 399 |
+
|
| 400 |
+
# # Compute embeddings
|
| 401 |
+
# model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
| 402 |
+
# embedding_matrix1 = model.encode(texts1, show_progressbar=True)
|
| 403 |
+
# embedding_matrix2 = model.encode(texts2, show_progressbar=True)
|
| 404 |
+
|
| 405 |
+
# # Deduplicate across datasets
|
| 406 |
+
# duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(embedding_matrix1, embedding_matrix2, threshold, progress=progress)
|
| 407 |
+
|
| 408 |
+
# num_duplicates = len(duplicate_indices_in_ds2)
|
| 409 |
+
# num_total_ds2 = len(texts2)
|
| 410 |
+
# num_unique_ds2 = num_total_ds2 - num_duplicates
|
| 411 |
+
|
| 412 |
+
# result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n"
|
| 413 |
+
# result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
|
| 414 |
+
# result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
|
| 415 |
+
|
| 416 |
+
# # Show deduplicated examples
|
| 417 |
+
# result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
|
| 418 |
+
# num_examples = min(5, num_duplicates)
|
| 419 |
+
# for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
|
| 420 |
+
# original_idx = duplicate_to_original_mapping[duplicate_idx]
|
| 421 |
+
# original_text = texts1[original_idx]
|
| 422 |
+
# duplicate_text = texts2[duplicate_idx]
|
| 423 |
+
# differences = display_word_differences(original_text, duplicate_text)
|
| 424 |
+
# result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
|
| 425 |
+
# result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
|
| 426 |
+
# result_text += f"**Differences:**\n{differences}\n"
|
| 427 |
+
# result_text += "-" * 50 + "\n\n"
|
| 428 |
+
|
| 429 |
+
# return result_text
|
| 430 |
+
|
| 431 |
+
# with gr.Blocks() as demo:
|
| 432 |
+
# gr.Markdown("# Semantic Deduplication")
|
| 433 |
+
|
| 434 |
+
# deduplication_type = gr.Radio(
|
| 435 |
+
# choices=["Single dataset", "Cross-dataset"],
|
| 436 |
+
# label="Deduplication Type",
|
| 437 |
+
# value="Single dataset"
|
| 438 |
+
# )
|
| 439 |
+
|
| 440 |
+
# with gr.Row():
|
| 441 |
+
# dataset1_name = gr.Textbox(value="ag_news", label="Dataset 1 Name")
|
| 442 |
+
# dataset1_split = gr.Textbox(value="train", label="Dataset 1 Split")
|
| 443 |
+
# dataset1_text_column = gr.Textbox(value="text", label="Text Column Name")
|
| 444 |
+
|
| 445 |
+
# dataset2_inputs = gr.Column(visible=False)
|
| 446 |
+
# with dataset2_inputs:
|
| 447 |
+
# gr.Markdown("### Dataset 2")
|
| 448 |
+
# with gr.Row():
|
| 449 |
+
# dataset2_name = gr.Textbox(value="ag_news", label="Dataset 2 Name")
|
| 450 |
+
# dataset2_split = gr.Textbox(value="test", label="Dataset 2 Split")
|
| 451 |
+
# dataset2_text_column = gr.Textbox(value="text", label="Text Column Name")
|
| 452 |
+
|
| 453 |
+
# threshold = gr.Slider(
|
| 454 |
+
# minimum=0.0,
|
| 455 |
+
# maximum=1.0,
|
| 456 |
+
# value=0.8,
|
| 457 |
+
# label="Similarity Threshold"
|
| 458 |
+
# )
|
| 459 |
+
|
| 460 |
+
# compute_button = gr.Button("Compute")
|
| 461 |
+
|
| 462 |
+
# output = gr.Markdown()
|
| 463 |
+
|
| 464 |
+
# # Function to update the visibility of dataset2_inputs
|
| 465 |
+
# def update_visibility(deduplication_type_value):
|
| 466 |
+
# if deduplication_type_value == "Cross-dataset":
|
| 467 |
+
# return gr.update(visible=True)
|
| 468 |
+
# else:
|
| 469 |
+
# return gr.update(visible=False)
|
| 470 |
+
|
| 471 |
+
# deduplication_type.change(
|
| 472 |
+
# update_visibility,
|
| 473 |
+
# inputs=deduplication_type,
|
| 474 |
+
# outputs=dataset2_inputs
|
| 475 |
+
# )
|
| 476 |
+
|
| 477 |
+
# compute_button.click(
|
| 478 |
+
# fn=perform_deduplication,
|
| 479 |
+
# inputs=[
|
| 480 |
+
# deduplication_type,
|
| 481 |
+
# dataset1_name,
|
| 482 |
+
# dataset1_split,
|
| 483 |
+
# dataset1_text_column,
|
| 484 |
+
# dataset2_name,
|
| 485 |
+
# dataset2_split,
|
| 486 |
+
# dataset2_text_column,
|
| 487 |
+
# threshold
|
| 488 |
+
# ],
|
| 489 |
+
# outputs=output
|
| 490 |
+
# )
|
| 491 |
+
|
| 492 |
+
# demo.launch()
|