Create ingest.py
Browse files
ingest.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 3 |
+
from langchain.vectorstores import Chroma
|
| 4 |
+
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
| 5 |
+
from langchain.document_loaders import PyPDFLoader
|
| 6 |
+
|
| 7 |
+
model_name = "jhgan/ko-sroberta-multitask"
|
| 8 |
+
model_kwargs = {'device': 'cpu'}
|
| 9 |
+
encode_kwargs = {'normalize_embeddings': False}
|
| 10 |
+
embeddings = HuggingFaceBgeEmbeddings(
|
| 11 |
+
model_name=model_name,
|
| 12 |
+
model_kwargs=model_kwargs,
|
| 13 |
+
encode_kwargs=encode_kwargs
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
loader = PyPDFLoader("23-24νμ΄κ²½κΈ°κ·μΉ.pdf")
|
| 17 |
+
documents = loader.load()
|
| 18 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
| 19 |
+
texts = text_splitter.split_documents(documents)
|
| 20 |
+
|
| 21 |
+
vector_store = Chroma.from_documents(texts, embeddings, collection_metadata={"hnsw:space": "cosine"}, persist_directory="stores/pet_cosine")
|
| 22 |
+
|
| 23 |
+
print("Vector Store Created.......")
|