Spaces:
Runtime error
Runtime error
Commit
·
4424c49
1
Parent(s):
0ad933c
Update models.py
Browse files
models.py
CHANGED
|
@@ -99,7 +99,7 @@ class OpenSourceLlama2Model(BaseTCOModel):
|
|
| 99 |
with: <br>
|
| 100 |
CT = Cost per Token <br>
|
| 101 |
VM_CH = VM Cost per Hour <br>
|
| 102 |
-
TS = Tokens per Second
|
| 103 |
MO = Maxed Out <br>
|
| 104 |
U = Used
|
| 105 |
""")
|
|
@@ -107,15 +107,16 @@ class OpenSourceLlama2Model(BaseTCOModel):
|
|
| 107 |
|
| 108 |
def render(self):
|
| 109 |
vm_choices = ["1x Nvidia A100 (Azure NC24ads A100 v4)",
|
| 110 |
-
"2x Nvidia A100 (Azure NC48ads A100 v4)"
|
|
|
|
| 111 |
|
| 112 |
def on_model_change(model):
|
| 113 |
if model == "Llama 2 7B":
|
| 114 |
-
return gr.Dropdown.update(choices=vm_choices)
|
| 115 |
else:
|
| 116 |
-
not_supported_vm = ["1x Nvidia A100 (Azure NC24ads A100 v4)"]
|
| 117 |
choices = [x for x in vm_choices if x not in not_supported_vm]
|
| 118 |
-
return gr.Dropdown.update(choices=choices)
|
| 119 |
|
| 120 |
def on_vm_change(model, vm):
|
| 121 |
# TO DO: load info from CSV
|
|
@@ -123,6 +124,10 @@ class OpenSourceLlama2Model(BaseTCOModel):
|
|
| 123 |
return [gr.Number.update(value=3.6730), gr.Number.update(value=694.38)]
|
| 124 |
elif model == "Llama 2 7B" and vm == "2x Nvidia A100 (Azure NC48ads A100 v4)":
|
| 125 |
return [gr.Number.update(value=7.346), gr.Number.update(value=1388.76)]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
self.model = gr.Dropdown(["Llama 2 7B", "Llama 2 70B"], value="Llama 2 7B", label="OpenSource models", visible=False)
|
| 128 |
self.vm = gr.Dropdown(vm_choices,
|
|
@@ -132,22 +137,67 @@ class OpenSourceLlama2Model(BaseTCOModel):
|
|
| 132 |
info="Your options for this choice depend on the model you previously chose"
|
| 133 |
)
|
| 134 |
self.vm_cost_per_hour = gr.Number(3.6730, label="VM instance cost per hour",
|
| 135 |
-
interactive=
|
| 136 |
self.tokens_per_second = gr.Number(694.38, visible=False,
|
| 137 |
label="Number of tokens per second for this specific model and VM instance",
|
| 138 |
interactive=False
|
| 139 |
)
|
| 140 |
-
self.input_length = gr.Number(
|
| 141 |
-
interactive=
|
|
|
|
|
|
|
| 142 |
|
| 143 |
-
self.model.change(on_model_change, inputs=self.model, outputs=self.vm)
|
| 144 |
self.vm.change(on_vm_change, inputs=[self.model, self.vm], outputs=[self.vm_cost_per_hour, self.tokens_per_second])
|
| 145 |
self.maxed_out = gr.Slider(minimum=0.01, value=50., step=0.01, label="% maxed out",
|
| 146 |
-
info="How much the GPU is fully used
|
| 147 |
interactive=True,
|
| 148 |
visible=False)
|
| 149 |
self.used = gr.Slider(minimum=0.01, value=50., step=0.01, label="% used",
|
| 150 |
-
info="Percentage of time the GPU is used
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
interactive=True,
|
| 152 |
visible=False)
|
| 153 |
|
|
@@ -174,8 +224,8 @@ class CohereModel(BaseTCOModel):
|
|
| 174 |
else:
|
| 175 |
return gr.Dropdown.update(choices=["Default", "Custom"])
|
| 176 |
|
| 177 |
-
self.use_case = gr.Dropdown(["
|
| 178 |
-
label="
|
| 179 |
interactive=True, visible=False)
|
| 180 |
self.model = gr.Dropdown(["Default", "Custom"], value="Default",
|
| 181 |
label="Model",
|
|
@@ -189,21 +239,11 @@ class CohereModel(BaseTCOModel):
|
|
| 189 |
use_case = use_case[0]
|
| 190 |
model = model[0]
|
| 191 |
|
| 192 |
-
if use_case == "
|
| 193 |
-
if model == "Default":
|
| 194 |
-
cost_per_1M_input_tokens = 0.4
|
| 195 |
-
else:
|
| 196 |
-
cost_per_1M_input_tokens = 0.8
|
| 197 |
-
elif use_case == "Generate":
|
| 198 |
if model == "Default":
|
| 199 |
cost_per_1M_input_tokens = 15
|
| 200 |
else:
|
| 201 |
cost_per_1M_input_tokens = 30
|
| 202 |
-
elif use_case == "Classify":
|
| 203 |
-
if model == "Default":
|
| 204 |
-
cost_per_1M_input_tokens = 200
|
| 205 |
-
else:
|
| 206 |
-
cost_per_1M_input_tokens = 200
|
| 207 |
else:
|
| 208 |
cost_per_1M_input_tokens = 15
|
| 209 |
|
|
|
|
| 99 |
with: <br>
|
| 100 |
CT = Cost per Token <br>
|
| 101 |
VM_CH = VM Cost per Hour <br>
|
| 102 |
+
TS = Tokens per Second <br>
|
| 103 |
MO = Maxed Out <br>
|
| 104 |
U = Used
|
| 105 |
""")
|
|
|
|
| 107 |
|
| 108 |
def render(self):
|
| 109 |
vm_choices = ["1x Nvidia A100 (Azure NC24ads A100 v4)",
|
| 110 |
+
"2x Nvidia A100 (Azure NC48ads A100 v4)",
|
| 111 |
+
"4x Nvidia A100 (Azure NC48ads A100 v4)"]
|
| 112 |
|
| 113 |
def on_model_change(model):
|
| 114 |
if model == "Llama 2 7B":
|
| 115 |
+
return [gr.Dropdown.update(choices=vm_choices), gr.Markdown.update(visible=True), gr.Markdown.update(visible=False)]
|
| 116 |
else:
|
| 117 |
+
not_supported_vm = ["1x Nvidia A100 (Azure NC24ads A100 v4)", "2x Nvidia A100 (Azure NC48ads A100 v4)"]
|
| 118 |
choices = [x for x in vm_choices if x not in not_supported_vm]
|
| 119 |
+
return [gr.Dropdown.update(choices=choices), gr.Markdown.update(visible=False), gr.Markdown.update(visible=True)]
|
| 120 |
|
| 121 |
def on_vm_change(model, vm):
|
| 122 |
# TO DO: load info from CSV
|
|
|
|
| 124 |
return [gr.Number.update(value=3.6730), gr.Number.update(value=694.38)]
|
| 125 |
elif model == "Llama 2 7B" and vm == "2x Nvidia A100 (Azure NC48ads A100 v4)":
|
| 126 |
return [gr.Number.update(value=7.346), gr.Number.update(value=1388.76)]
|
| 127 |
+
elif model == "Llama 2 7B" and vm == "4x Nvidia A100 (Azure NC48ads A100 v4)":
|
| 128 |
+
return [gr.Number.update(value=14.692), gr.Number.update(value=2777.52)]
|
| 129 |
+
elif model == "Llama 2 70B" and vm == "4x Nvidia A100 (Azure NC48ads A100 v4)":
|
| 130 |
+
return [gr.Number.update(value=14.692), gr.Number.update(value=18.6)]
|
| 131 |
|
| 132 |
self.model = gr.Dropdown(["Llama 2 7B", "Llama 2 70B"], value="Llama 2 7B", label="OpenSource models", visible=False)
|
| 133 |
self.vm = gr.Dropdown(vm_choices,
|
|
|
|
| 137 |
info="Your options for this choice depend on the model you previously chose"
|
| 138 |
)
|
| 139 |
self.vm_cost_per_hour = gr.Number(3.6730, label="VM instance cost per hour",
|
| 140 |
+
interactive=False, visible=False)
|
| 141 |
self.tokens_per_second = gr.Number(694.38, visible=False,
|
| 142 |
label="Number of tokens per second for this specific model and VM instance",
|
| 143 |
interactive=False
|
| 144 |
)
|
| 145 |
+
self.input_length = gr.Number(233, label="Average number of input tokens", info="This is the number of input tokens used when the model was benchmarked to get the number of tokens/second it processes",
|
| 146 |
+
interactive=False, visible=False)
|
| 147 |
+
self.info_7B = gr.Markdown("To see the script used to benchmark the Llama2-7B model, [click here](https://example.com/script)", interactive=False, visible=False)
|
| 148 |
+
self.info_70B = gr.Markdown("To see the benchmark results used for the Llama2-70B model, [click here](https://www.cursor.so/blog/llama-inference#user-content-fn-llama-paper)", interactive=False, visible=False)
|
| 149 |
|
| 150 |
+
self.model.change(on_model_change, inputs=self.model, outputs=[self.vm, self.info_7B, self.info_70B])
|
| 151 |
self.vm.change(on_vm_change, inputs=[self.model, self.vm], outputs=[self.vm_cost_per_hour, self.tokens_per_second])
|
| 152 |
self.maxed_out = gr.Slider(minimum=0.01, value=50., step=0.01, label="% maxed out",
|
| 153 |
+
info="How much the GPU is fully used",
|
| 154 |
interactive=True,
|
| 155 |
visible=False)
|
| 156 |
self.used = gr.Slider(minimum=0.01, value=50., step=0.01, label="% used",
|
| 157 |
+
info="Percentage of time the GPU is used",
|
| 158 |
+
interactive=True,
|
| 159 |
+
visible=False)
|
| 160 |
+
|
| 161 |
+
def compute_cost_per_token(self, vm_cost_per_hour, tokens_per_second, maxed_out, used):
|
| 162 |
+
cost_per_token = vm_cost_per_hour / (tokens_per_second * 3600 * maxed_out * used)
|
| 163 |
+
return cost_per_token
|
| 164 |
+
|
| 165 |
+
class OpenSourceDIY(BaseTCOModel):
|
| 166 |
+
|
| 167 |
+
def __init__(self):
|
| 168 |
+
self.set_name("(Open source) DIY")
|
| 169 |
+
self.set_formula(r"""$CT = \frac{VM\_CH}{TS \times 3600 \times MO \times U}$<br>
|
| 170 |
+
with: <br>
|
| 171 |
+
CT = Cost per Token <br>
|
| 172 |
+
VM_CH = VM Cost per Hour <br>
|
| 173 |
+
TS = Tokens per Second <br>
|
| 174 |
+
MO = Maxed Out <br>
|
| 175 |
+
U = Used
|
| 176 |
+
""")
|
| 177 |
+
super().__init__()
|
| 178 |
+
|
| 179 |
+
def render(self):
|
| 180 |
+
self.info = gr.Markdown("Compute the cost/token based on our formula below, using your own parameters", visible=False)
|
| 181 |
+
self.display_formula = gr.Markdown(r"""$CT = \frac{VM\_CH}{TS \times 3600 \times MO \times U}$<br>
|
| 182 |
+
with: <br>
|
| 183 |
+
CT = Cost per Token <br>
|
| 184 |
+
VM_CH = VM Cost per Hour <br>
|
| 185 |
+
TS = Tokens per Second <br>
|
| 186 |
+
MO = Maxed Out <br>
|
| 187 |
+
U = Used
|
| 188 |
+
""", visible=False)
|
| 189 |
+
self.vm_cost_per_hour = gr.Number(3.5, label="VM instance cost per hour",
|
| 190 |
+
interactive=True, visible=False)
|
| 191 |
+
self.tokens_per_second = gr.Number(700, visible=False,
|
| 192 |
+
label="Number of tokens per second for this specific model and VM instance",
|
| 193 |
+
interactive=True
|
| 194 |
+
)
|
| 195 |
+
self.maxed_out = gr.Slider(minimum=0.01, value=50., step=0.01, label="% maxed out",
|
| 196 |
+
info="How much the GPU is fully used",
|
| 197 |
+
interactive=True,
|
| 198 |
+
visible=False)
|
| 199 |
+
self.used = gr.Slider(minimum=0.01, value=50., step=0.01, label="% used",
|
| 200 |
+
info="Percentage of time the GPU is used",
|
| 201 |
interactive=True,
|
| 202 |
visible=False)
|
| 203 |
|
|
|
|
| 224 |
else:
|
| 225 |
return gr.Dropdown.update(choices=["Default", "Custom"])
|
| 226 |
|
| 227 |
+
self.use_case = gr.Dropdown(["Generate", "Summarize"], value="Generate",
|
| 228 |
+
label="API",
|
| 229 |
interactive=True, visible=False)
|
| 230 |
self.model = gr.Dropdown(["Default", "Custom"], value="Default",
|
| 231 |
label="Model",
|
|
|
|
| 239 |
use_case = use_case[0]
|
| 240 |
model = model[0]
|
| 241 |
|
| 242 |
+
if use_case == "Generate":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 243 |
if model == "Default":
|
| 244 |
cost_per_1M_input_tokens = 15
|
| 245 |
else:
|
| 246 |
cost_per_1M_input_tokens = 30
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
else:
|
| 248 |
cost_per_1M_input_tokens = 15
|
| 249 |
|