move project from private to public space
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +2 -0
- .streamlit/config.toml +19 -0
- README.md +108 -8
- app.py +65 -0
- assets/data_preprocessing_objects/ecdfs.pkl +3 -0
- assets/data_preprocessing_objects/scaler_fitted.pkl +3 -0
- assets/example_csv/.~lock.known_inactive_molecules.csv# +1 -0
- assets/example_csv/known_active_molecules.csv +3 -0
- assets/example_csv/known_inactive_molecules.csv +3 -0
- assets/example_csv/molecules_for_prediction.csv +3 -0
- assets/example_csv/predictions/nottrustworthy_example.csv +3 -0
- assets/example_csv/predictions/nottrustworthy_example.png +3 -0
- assets/example_csv/predictions/trustworthy_example.csv +3 -0
- assets/example_csv/predictions/trustworthy_example.png +3 -0
- assets/header.png +3 -0
- assets/logo.png +3 -0
- assets/mhnfs_data/cfg.yaml +42 -0
- assets/mhnfs_data/full_context_set.npy +3 -0
- assets/mhnfs_data/mhnfs_checkpoint.ckpt +3 -0
- assets/mhnfs_overview.png +3 -0
- assets/test_reference_data/ecfps.npy +3 -0
- assets/test_reference_data/model_input_query.pt +3 -0
- assets/test_reference_data/model_input_support_actives.pt +3 -0
- assets/test_reference_data/model_input_support_inactives.pt +3 -0
- assets/test_reference_data/model_predictions.pt +3 -0
- assets/test_reference_data/preprocessed_features.npy +3 -0
- assets/test_reference_data/rdkit_descr_quantils.npy +3 -0
- assets/test_reference_data/rdkit_descrs.npy +3 -0
- assets/test_reference_data/smiles.pkl +3 -0
- requirements.txt +10 -0
- src/__init__.py +0 -0
- src/__pycache__/__init__.cpython-37.pyc +0 -0
- src/__pycache__/prediction_pipeline.cpython-37.pyc +0 -0
- src/app/__pycache__/constants.cpython-37.pyc +0 -0
- src/app/__pycache__/layout.cpython-37.pyc +0 -0
- src/app/__pycache__/prediction_utils.cpython-37.pyc +0 -0
- src/app/constants.py +269 -0
- src/app/layout.py +439 -0
- src/app/prediction_utils.py +33 -0
- src/data_preprocessing/__init__.py +0 -0
- src/data_preprocessing/__pycache__/__init__.cpython-36.pyc +0 -0
- src/data_preprocessing/__pycache__/__init__.cpython-37.pyc +0 -0
- src/data_preprocessing/__pycache__/constants.cpython-37.pyc +0 -0
- src/data_preprocessing/__pycache__/create_descriptors.cpython-36.pyc +0 -0
- src/data_preprocessing/__pycache__/create_descriptors.cpython-37.pyc +0 -0
- src/data_preprocessing/__pycache__/create_model_inputs.cpython-37.pyc +0 -0
- src/data_preprocessing/__pycache__/utils.cpython-37.pyc +0 -0
- src/data_preprocessing/constants.py +11 -0
- src/data_preprocessing/create_descriptors.py +148 -0
- src/data_preprocessing/create_model_inputs.py +46 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.csv filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
.streamlit/config.toml
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[theme]
|
| 2 |
+
base="light"
|
| 3 |
+
|
| 4 |
+
# Primary accent for interactive elements
|
| 5 |
+
primaryColor = '#0078aa'
|
| 6 |
+
|
| 7 |
+
# Background color for the main content area
|
| 8 |
+
# backgroundColor = '#273346'
|
| 9 |
+
|
| 10 |
+
# Background color for sidebar and most interactive widgets
|
| 11 |
+
# secondaryBackgroundColor = '#7d828c'
|
| 12 |
+
|
| 13 |
+
# Color used for almost all text
|
| 14 |
+
# textColor = '#4bc9ff'
|
| 15 |
+
|
| 16 |
+
# Font family for all text in the app, except code blocks
|
| 17 |
+
# Accepted values (serif | sans serif | monospace)
|
| 18 |
+
# Default: "sans serif"
|
| 19 |
+
# font = "sans serif"
|
README.md
CHANGED
|
@@ -1,13 +1,113 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
|
| 5 |
-
|
|
|
|
| 6 |
sdk: streamlit
|
| 7 |
-
sdk_version: 1.
|
| 8 |
app_file: app.py
|
| 9 |
-
pinned:
|
| 10 |
-
license: gpl-3.0
|
| 11 |
---
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: MHNfs
|
| 3 |
+
emoji: 🔬
|
| 4 |
+
short_description: Activity prediction for low-data scenarios
|
| 5 |
+
colorFrom: gray
|
| 6 |
+
colorTo: gray
|
| 7 |
sdk: streamlit
|
| 8 |
+
sdk_version: 1.29.0
|
| 9 |
app_file: app.py
|
| 10 |
+
pinned: true
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
+
# Activity Predictions with MHNfs for low-data scenarios
|
| 14 |
+
|
| 15 |
+
## ⚙️ Under the hood
|
| 16 |
+
<div style="text-align: justify">
|
| 17 |
+
The predictive model (MHNfs) used in this application was specifically designed and
|
| 18 |
+
trained for low-data scenarios. The model predicts whether a molecule is active or
|
| 19 |
+
inactive. The predicted activity value is a continuous value between 0 and 1, and,
|
| 20 |
+
similar to a probability, the higher/lower the value, the more confident the model
|
| 21 |
+
is that the molecule is active/inactive.<br>
|
| 22 |
+
<br>
|
| 23 |
+
The model was trained on the FS-Mol dataset which
|
| 24 |
+
includes 5120 tasks (roughly 5000 tasks were used for training, rest for evaluation).
|
| 25 |
+
The training tasks are listed here:
|
| 26 |
+
<a href="https://github.com/microsoft/FS-Mol/tree/main/datasets/targets"
|
| 27 |
+
target="_blank">https://github.com/microsoft/FS-Mol/tree/main/datasets/targets</a>.
|
| 28 |
+
</div>
|
| 29 |
+
|
| 30 |
+
## 🎯 About few-shot learning and the model MHNfs
|
| 31 |
+
<div style="text-align: justify">
|
| 32 |
+
<b>Few-shot learning</b> is a machine learning sub-field which aims to provide
|
| 33 |
+
predictive models for scenarios in which only little data is known/available.<br>
|
| 34 |
+
<br>
|
| 35 |
+
<b>MHNfs</b> is a few-shot learning model which is specifically designed for drug
|
| 36 |
+
discovery applications. It is built to use the input prompts in a way such that
|
| 37 |
+
the provided available knowledge, i.e. the known active and inactive molecules,
|
| 38 |
+
functions as context to predict the activity of the new requested molecules.
|
| 39 |
+
Precisely, the provided active and inactive molecules are associated with a
|
| 40 |
+
large set of general molecules - called context molecules - to enrich the
|
| 41 |
+
provided information and to remove spurious correlations arising from the
|
| 42 |
+
decoration of molecules. This is analogous to a Large Language Model which would
|
| 43 |
+
not only use the provided information in the current prompt as context but would
|
| 44 |
+
also have access to way more information, e.g., a prompting history.
|
| 45 |
+
</div>
|
| 46 |
+
|
| 47 |
+
## 💻 Run the prediction pipeline locally for larger screening chunks
|
| 48 |
+
|
| 49 |
+
### Get started:
|
| 50 |
+
```bash
|
| 51 |
+
# Copied from hugging face
|
| 52 |
+
# Make sure you have git-lfs installed (https://git-lfs.com)
|
| 53 |
+
git lfs install
|
| 54 |
+
|
| 55 |
+
# Clone repo
|
| 56 |
+
git clone https://huggingface.co/spaces/tschouis/mhnfs
|
| 57 |
+
|
| 58 |
+
# Alternatively, if you want to clone without large files
|
| 59 |
+
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/spaces/tschouis/mhnfs
|
| 60 |
+
```
|
| 61 |
+
|
| 62 |
+
### Install requirements
|
| 63 |
+
```bash
|
| 64 |
+
pip install -r requirements.txt
|
| 65 |
+
```
|
| 66 |
+
Notably, this command was tested inside a conda environment with python 3.7.
|
| 67 |
+
|
| 68 |
+
### Run the prediction pipeline:
|
| 69 |
+
For your screening, load the model, i.e. the **Activity Predictor** into your python file or notebook and simply run it:
|
| 70 |
+
```python
|
| 71 |
+
from src.prediction_pipeline load ActivityPredictor
|
| 72 |
+
|
| 73 |
+
# Define inputs
|
| 74 |
+
query_smiles = ["C1CCCCC1", "C1CCCCC1", "C1CCCCC1", "C1CCCCC1"] # Replace with your data
|
| 75 |
+
support_actives_smiles = ["C1CCCCC1", "C1CCCCC1"] # Replace with your data
|
| 76 |
+
support_inactives_smiles = ["C1CCCCC1", "C1CCCCC1"] # Replace with your data
|
| 77 |
+
|
| 78 |
+
# Make predictions
|
| 79 |
+
predictions = predictor.predict(query_smiles, support_actives_smiles support_inactives_smiles)
|
| 80 |
+
```
|
| 81 |
+
|
| 82 |
+
* Provide molecules in SMILES notation.
|
| 83 |
+
* Make sure that the inputs to the Activity Predictor are either comma separated lists, or flattened numpy arrays, or pandas DataFrames. In the latter case, there should be a "smiles" column (both upper and lower case "SMILES" are accepted). All other columns are ignored.
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
### Run the app locally with streamlib:
|
| 88 |
+
```bash
|
| 89 |
+
# Navigate into root directory of this project
|
| 90 |
+
cd .../whatever_your_dir_name_is/ # Replace with your path
|
| 91 |
+
|
| 92 |
+
# Run streamlit app
|
| 93 |
+
python -m streamlit run
|
| 94 |
+
```
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
## 🤗 Hugging face app
|
| 98 |
+
Explore our hugging-face app here:
|
| 99 |
+
|
| 100 |
+
## 📚 Cite us
|
| 101 |
+
|
| 102 |
+
```
|
| 103 |
+
@inproceedings{
|
| 104 |
+
schimunek2023contextenriched,
|
| 105 |
+
title={Context-enriched molecule representations improve few-shot drug discovery},
|
| 106 |
+
author={Johannes Schimunek and Philipp Seidl and Lukas Friedrich and Daniel Kuhn and Friedrich Rippmann and Sepp Hochreiter and Günter Klambauer},
|
| 107 |
+
booktitle={The Eleventh International Conference on Learning Representations},
|
| 108 |
+
year={2023},
|
| 109 |
+
url={https://openreview.net/forum?id=XrMWUuEevr}
|
| 110 |
+
}
|
| 111 |
+
```
|
| 112 |
+
|
| 113 |
+
|
app.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
This script runs the streamlit app for MHNfs
|
| 3 |
+
|
| 4 |
+
MHNfs: Few-shot method for drug discovery activity predictions
|
| 5 |
+
(https://openreview.net/pdf?id=XrMWUuEevr)
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
# --------------------------------------------------------------------------------------
|
| 9 |
+
# Imports
|
| 10 |
+
import streamlit as st
|
| 11 |
+
|
| 12 |
+
from src.app.layout import LayoutMaker
|
| 13 |
+
from src.app.prediction_utils import (create_prediction_df,
|
| 14 |
+
create_molecule_grid_plot)
|
| 15 |
+
from src.prediction_pipeline import ActivityPredictor
|
| 16 |
+
|
| 17 |
+
# --------------------------------------------------------------------------------------
|
| 18 |
+
# Functions
|
| 19 |
+
class App():
|
| 20 |
+
def __init__(self):
|
| 21 |
+
# Set page configration to wide
|
| 22 |
+
st.set_page_config(layout="wide", page_title="MHNfs", page_icon="🔬")
|
| 23 |
+
|
| 24 |
+
# Layout maker
|
| 25 |
+
self.layoutMaker = LayoutMaker()
|
| 26 |
+
|
| 27 |
+
# Load mhnfs model
|
| 28 |
+
self.predictor = ActivityPredictor()
|
| 29 |
+
|
| 30 |
+
def define_layout(self):
|
| 31 |
+
|
| 32 |
+
# Define Sidebar width
|
| 33 |
+
css = '''
|
| 34 |
+
<style>
|
| 35 |
+
[data-testid="stSidebar"]{
|
| 36 |
+
min-width: 500px;
|
| 37 |
+
max-width: 500px;
|
| 38 |
+
}
|
| 39 |
+
</style>
|
| 40 |
+
'''
|
| 41 |
+
st.markdown(css, unsafe_allow_html=True)
|
| 42 |
+
|
| 43 |
+
# Sidebar
|
| 44 |
+
self.inputs, self.buttons = self.layoutMaker.make_sidebar()
|
| 45 |
+
|
| 46 |
+
# Main page
|
| 47 |
+
# - header
|
| 48 |
+
self.layoutMaker.make_header()
|
| 49 |
+
|
| 50 |
+
# - main body
|
| 51 |
+
self.layoutMaker.make_main_content_area(self.predictor,
|
| 52 |
+
self.inputs,
|
| 53 |
+
self.buttons,
|
| 54 |
+
create_prediction_df,
|
| 55 |
+
create_molecule_grid_plot)
|
| 56 |
+
|
| 57 |
+
def run_app():
|
| 58 |
+
app = App()
|
| 59 |
+
app.define_layout()
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
# --------------------------------------------------------------------------------------
|
| 63 |
+
# Run script
|
| 64 |
+
if __name__ == "__main__":
|
| 65 |
+
run_app()
|
assets/data_preprocessing_objects/ecdfs.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:eeec12688fd9e0bb0bbd68d5203e2fb46c45d30a07417f0883adbfc133d48e9f
|
| 3 |
+
size 520417347
|
assets/data_preprocessing_objects/scaler_fitted.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4538c1c1d9b5b50d29a14c14134f66a563c3a0f4022ce77b8eb2959c3eff51ea
|
| 3 |
+
size 54501
|
assets/example_csv/.~lock.known_inactive_molecules.csv#
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
,johannes,Latitude-5501,02.01.2024 15:57,file:///home/johannes/.config/libreoffice/4;
|
assets/example_csv/known_active_molecules.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bc98c05246b42d84c6833d191efa32c7c6473d76c5f2719c8ff3310cfe22df04
|
| 3 |
+
size 353
|
assets/example_csv/known_inactive_molecules.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a6e183c33b7445ae0c00bea4a7cdae52bfce14da2829f6827e20dda162df23af
|
| 3 |
+
size 363
|
assets/example_csv/molecules_for_prediction.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:497adfdbd026c7ab7d1564b685a246fcb7eb6eabb2442918862b31ccd0b32369
|
| 3 |
+
size 460
|
assets/example_csv/predictions/nottrustworthy_example.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f3f8b5e017175b8d62982b1fc4138a4348f51b6a0469c32df991f5d2576a679d
|
| 3 |
+
size 588
|
assets/example_csv/predictions/nottrustworthy_example.png
ADDED
|
Git LFS Details
|
assets/example_csv/predictions/trustworthy_example.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3517bcef4a9998975b031d1b4f2b4aa29679669079100230f84e27bc06f80c02
|
| 3 |
+
size 889
|
assets/example_csv/predictions/trustworthy_example.png
ADDED
|
Git LFS Details
|
assets/header.png
ADDED
|
Git LFS Details
|
assets/logo.png
ADDED
|
Git LFS Details
|
assets/mhnfs_data/cfg.yaml
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model:
|
| 2 |
+
encoder:
|
| 3 |
+
activation: selu
|
| 4 |
+
input_dim: 2248
|
| 5 |
+
number_hidden_layers: 0
|
| 6 |
+
number_hidden_neurons: 1024
|
| 7 |
+
regularization:
|
| 8 |
+
input_dropout: 0.1
|
| 9 |
+
dropout: 0.5
|
| 10 |
+
layerNormBlock:
|
| 11 |
+
affine: False
|
| 12 |
+
usage: True
|
| 13 |
+
transformer:
|
| 14 |
+
activity_embedding_dim: 64
|
| 15 |
+
number_heads: 8
|
| 16 |
+
dim_forward: 567
|
| 17 |
+
dropout: 0.5
|
| 18 |
+
num_layers: 1
|
| 19 |
+
ss_dropout: 0.1
|
| 20 |
+
hopfield:
|
| 21 |
+
dim_QK: 512
|
| 22 |
+
heads: 8
|
| 23 |
+
beta: 0.044194173824159216
|
| 24 |
+
dropout: 0.5
|
| 25 |
+
prediction_scaling: 0.044194173824159216
|
| 26 |
+
associationSpace_dim: 1024
|
| 27 |
+
similarityModule:
|
| 28 |
+
type: cosineSim
|
| 29 |
+
l2Norm: False
|
| 30 |
+
scaling: 1/N
|
| 31 |
+
training:
|
| 32 |
+
optimizer: AdamW
|
| 33 |
+
batch_size: 512
|
| 34 |
+
lr: 0.0001
|
| 35 |
+
weightDecay: 0.0
|
| 36 |
+
lrScheduler:
|
| 37 |
+
usage: True
|
| 38 |
+
context:
|
| 39 |
+
ratio_training_molecules: 0.05
|
| 40 |
+
system:
|
| 41 |
+
ressources:
|
| 42 |
+
device: cpu
|
assets/mhnfs_data/full_context_set.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1ed40b8d9cc39859772af0d32ed69c7f2467b9235f83f37ff42611bc22828e52
|
| 3 |
+
size 3899416896
|
assets/mhnfs_data/mhnfs_checkpoint.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:25fcfdb7c6355b7781edaefc9ec56351f012356b17e4087f72b0a78c6d8e2300
|
| 3 |
+
size 313588174
|
assets/mhnfs_overview.png
ADDED
|
Git LFS Details
|
assets/test_reference_data/ecfps.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:056a628c308cf69e647f2c86090f8f93c2aedcd719845f57f11e653ce6d9d70b
|
| 3 |
+
size 24704
|
assets/test_reference_data/model_input_query.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e889558eb3300355b5c6ea0ce1518bb949141238b8d26b257ec1bd496baeda18
|
| 3 |
+
size 36715
|
assets/test_reference_data/model_input_support_actives.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e5e55816e09597d267fb91297a56f58a4f4420ed32340650be4c1dd37efe1656
|
| 3 |
+
size 72683
|
assets/test_reference_data/model_input_support_inactives.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e62e8b18da47d1c9475c18bc2ad50a563f10f0d0bced247d848e453321a13ced
|
| 3 |
+
size 72683
|
assets/test_reference_data/model_predictions.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a7e63ad2ad9b664e3301479427f8d5cf005c979d7cc9e4bce033f18640eb4df0
|
| 3 |
+
size 747
|
assets/test_reference_data/preprocessed_features.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1e97dc7eb85509c6b07156292b57a1bee4eaa8d60fbdb40c7e2e5738c8c6a460
|
| 3 |
+
size 54080
|
assets/test_reference_data/rdkit_descr_quantils.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cde4d2fd8658cdbcd55e75f14cb360cfa1b239f99d281c1f7296449636e94c6a
|
| 3 |
+
size 4928
|
assets/test_reference_data/rdkit_descrs.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d1b06153004b3f2ac02f0cefd16b0f17225527bbf53f8efe6e43c035b3d21690
|
| 3 |
+
size 2528
|
assets/test_reference_data/smiles.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e0168a7aaa6f7f3eca611a42d70782bae9eb970194449320d37b64f5a8c264f9
|
| 3 |
+
size 179
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
rdkit==2022.3.3
|
| 2 |
+
pytorch-lightning==1.6.1
|
| 3 |
+
torch==1.13.1
|
| 4 |
+
numpy==1.21.5
|
| 5 |
+
pandas==1.3.5
|
| 6 |
+
omegaconf==2.1.2
|
| 7 |
+
mols2grid==1.1.1
|
| 8 |
+
scikit-learn
|
| 9 |
+
statsmodels==0.13.5
|
| 10 |
+
streamlit
|
src/__init__.py
ADDED
|
File without changes
|
src/__pycache__/__init__.cpython-37.pyc
ADDED
|
Binary file (154 Bytes). View file
|
|
|
src/__pycache__/prediction_pipeline.cpython-37.pyc
ADDED
|
Binary file (2.73 kB). View file
|
|
|
src/app/__pycache__/constants.cpython-37.pyc
ADDED
|
Binary file (13.1 kB). View file
|
|
|
src/app/__pycache__/layout.cpython-37.pyc
ADDED
|
Binary file (13.3 kB). View file
|
|
|
src/app/__pycache__/prediction_utils.cpython-37.pyc
ADDED
|
Binary file (1.05 kB). View file
|
|
|
src/app/constants.py
ADDED
|
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
This file includes all the constant content shown in the app
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
# --------------------------------------------------------------------------------------
|
| 6 |
+
|
| 7 |
+
summary_text = ('''
|
| 8 |
+
This application allows you to make **activity predictions** for
|
| 9 |
+
**biological targets** for which you have only a **little knowledge** in
|
| 10 |
+
terms of known active and inactive molecules.
|
| 11 |
+
|
| 12 |
+
**Provide** via the sidebar:\n
|
| 13 |
+
- some active molecules,
|
| 14 |
+
- some inactive molecules, and
|
| 15 |
+
- molecules you want to predict.
|
| 16 |
+
|
| 17 |
+
Hit **Predict** and explore the predictions!
|
| 18 |
+
|
| 19 |
+
For more **information** about the **model** and **how to provide the
|
| 20 |
+
molecules**, please visit the **Additional Information** tab.
|
| 21 |
+
''')
|
| 22 |
+
|
| 23 |
+
mhnfs_text =('''
|
| 24 |
+
<div style="text-align: justify">
|
| 25 |
+
<b>MHNfs</b> is a few-shot drug discovery model which consists of a <b>context
|
| 26 |
+
module</b> , a <b>cross-attention module</b> , and a <b>similarity module</b>
|
| 27 |
+
as described here: <a href="https://openreview.net/pdf?id=XrMWUuEevr"
|
| 28 |
+
target="_blank">https://openreview.net/pdf?id=XrMWUuEevr</a>.
|
| 29 |
+
</div>
|
| 30 |
+
<br>
|
| 31 |
+
|
| 32 |
+
<div style="text-align: justify">
|
| 33 |
+
<b>Abstract</b>. A central task in computational drug discovery is to construct
|
| 34 |
+
models from known active molecules to find further promising molecules for
|
| 35 |
+
subsequent screening. However, typically only very few active molecules are
|
| 36 |
+
known. Therefore, few-shot learning methods have the potential to improve the
|
| 37 |
+
effectiveness of this critical phase of the drug discovery process. We introduce
|
| 38 |
+
a new method for few-shot drug discovery. Its main idea is to enrich a molecule
|
| 39 |
+
representation by knowledge about known context or reference molecules. Our
|
| 40 |
+
novel concept for molecule representation enrichment is to associate molecules
|
| 41 |
+
from both the support set and the query set with a large set of reference
|
| 42 |
+
(context) molecules through a modern Hopfield network. Intuitively, this
|
| 43 |
+
enrichment step is analogous to a human expert who would associate a given
|
| 44 |
+
molecule with familiar molecules whose properties are known. The enrichment step
|
| 45 |
+
reinforces and amplifies the covariance structure of the data, while
|
| 46 |
+
simultaneously removing spurious correlations arising from the decoration of
|
| 47 |
+
molecules. Our approach is compared with other few-shot methods for drug
|
| 48 |
+
discovery on the FS-Mol benchmark dataset. On FS-Mol, our approach outperforms
|
| 49 |
+
all compared methods and therefore sets a new state-of-the art for few-shot
|
| 50 |
+
learning in drug discovery. An ablation study shows that the enrichment step of
|
| 51 |
+
our method is the key to improve the predictive quality. In a domain shift
|
| 52 |
+
experiment, we further demonstrate the robustness of our method. Code is
|
| 53 |
+
available at <a href="https://github.com/ml-jku/MHNfs"
|
| 54 |
+
target="_blank">https://github.com/ml-jku/MHNfs</a>.
|
| 55 |
+
</div>
|
| 56 |
+
<br>
|
| 57 |
+
<br>
|
| 58 |
+
''')
|
| 59 |
+
|
| 60 |
+
citation_text = '''
|
| 61 |
+
###
|
| 62 |
+
@inproceedings{
|
| 63 |
+
schimunek2023contextenriched,
|
| 64 |
+
title={Context-enriched molecule representations improve few-shot drug discovery},
|
| 65 |
+
author={Johannes Schimunek and Philipp Seidl and Lukas Friedrich and Daniel Kuhn and Friedrich Rippmann and Sepp Hochreiter and Günter
|
| 66 |
+
Klambauer},
|
| 67 |
+
booktitle={The Eleventh International Conference on Learning Representations},
|
| 68 |
+
year={2023},
|
| 69 |
+
url={https://openreview.net/forum?id=XrMWUuEevr}
|
| 70 |
+
}
|
| 71 |
+
'''
|
| 72 |
+
|
| 73 |
+
few_shot_learning_text = (
|
| 74 |
+
'''
|
| 75 |
+
<div style="text-align: justify">
|
| 76 |
+
<b>Few-shot learning</b> is a machine learning sub-field which aims to provide
|
| 77 |
+
predictive models for scenarios in which only little data is known/available.<br>
|
| 78 |
+
<br>
|
| 79 |
+
|
| 80 |
+
<b>MHNfs</b> is a few-shot learning model which is specifically designed for drug
|
| 81 |
+
discovery applications. It is built to use the input prompts in a way such that
|
| 82 |
+
the provided available knowledge, i.e. the known active and inactive molecules,
|
| 83 |
+
functions as context to predict the activity of the new requested molecules.
|
| 84 |
+
Precisely, the provided active and inactive molecules are associated with a
|
| 85 |
+
large set of general molecules - called context molecules - to enrich the
|
| 86 |
+
provided information and to remove spurious correlations arising from the
|
| 87 |
+
decoration of molecules. This is analogous to a Large Language Model which would
|
| 88 |
+
not only use the provided information in the current prompt as context but would
|
| 89 |
+
also have access to way more information, e.g., a prompting history.
|
| 90 |
+
</div>
|
| 91 |
+
''')
|
| 92 |
+
|
| 93 |
+
under_the_hood_text = ('''
|
| 94 |
+
<div style="text-align: justify">
|
| 95 |
+
The predictive model (MHNfs) used in this application was specifically designed and
|
| 96 |
+
trained for low-data scenarios. The model predicts whether a molecule is active or
|
| 97 |
+
inactive. The predicted activity value is a continuous value between 0 and 1, and,
|
| 98 |
+
similar to a probability, the higher/lower the value, the more confident the model
|
| 99 |
+
is that the molecule is active/inactive.
|
| 100 |
+
|
| 101 |
+
The model was trained on the FS-Mol dataset which
|
| 102 |
+
includes 5120 tasks (roughly 5000 tasks were used for training, rest for evaluation).
|
| 103 |
+
The training tasks are listed here:
|
| 104 |
+
<a href="https://github.com/microsoft/FS-Mol/tree/main/datasets/targets"
|
| 105 |
+
target="_blank">https://github.com/microsoft/FS-Mol/tree/main/datasets/targets</a>.
|
| 106 |
+
</div>
|
| 107 |
+
''')
|
| 108 |
+
|
| 109 |
+
usage_text = ('''
|
| 110 |
+
<div style="text-align: justify">
|
| 111 |
+
To use this application, you need to provide <b>3 different sets of molecules</b>:
|
| 112 |
+
<ol>
|
| 113 |
+
<li><b>active</b> molecules: set of known active molecules,</li>
|
| 114 |
+
<li><b>inactive</b> molecules: set of known inactive molecules, and</li>
|
| 115 |
+
<li>molecules to <b>predict</b>: set of molecules you want to predict.</li>
|
| 116 |
+
</ol>
|
| 117 |
+
These three sets can be provided via the <b>sidebar</b>. The sidebar also includes two
|
| 118 |
+
buttons <b>predict</b> and <b>reset</b> to run the prediction pipeline and to
|
| 119 |
+
reset it.
|
| 120 |
+
</div>
|
| 121 |
+
''')
|
| 122 |
+
|
| 123 |
+
data_text = ('''
|
| 124 |
+
<div style="text-align: justify">
|
| 125 |
+
<ul>
|
| 126 |
+
<li> Molecules have to be provided in SMILES format</li>
|
| 127 |
+
<li> For each input, the maximum number of molecules which can be provided is
|
| 128 |
+
restricted to 20 </li>
|
| 129 |
+
<li> You can provide the molecules via the text boxes or via CSV upload
|
| 130 |
+
<ul>
|
| 131 |
+
<li> Text box
|
| 132 |
+
<ul>
|
| 133 |
+
<li> Replace the pseudo input by directly typing your molecules
|
| 134 |
+
into
|
| 135 |
+
the text box </li>
|
| 136 |
+
<li> Separate the molecules by comma </li>
|
| 137 |
+
</ul>
|
| 138 |
+
</li>
|
| 139 |
+
<li> CSV upload
|
| 140 |
+
<ul>
|
| 141 |
+
<li> The CSV file should include a "smiles" column (both upper
|
| 142 |
+
and lower case "SMILES" are accepted) </li>
|
| 143 |
+
<li> All other columns will be ignored </li>
|
| 144 |
+
<li> Examples are provided here:
|
| 145 |
+
<div style="background-color: #efefef">
|
| 146 |
+
assets/example_csv/ </li>
|
| 147 |
+
</div>
|
| 148 |
+
</ul>
|
| 149 |
+
</li>
|
| 150 |
+
</ul>
|
| 151 |
+
</li>
|
| 152 |
+
</ul>
|
| 153 |
+
</div>
|
| 154 |
+
''')
|
| 155 |
+
|
| 156 |
+
trust_text = ('''
|
| 157 |
+
<div style="text-align: justify">
|
| 158 |
+
Just like all other machine learning models, the performance of MHNfs varies
|
| 159 |
+
and, generally, the model works well if the task is somehow close to tasks which
|
| 160 |
+
were used to train the model. The model performance for very different tasks is
|
| 161 |
+
unclear and might be poor.<br>
|
| 162 |
+
<br>
|
| 163 |
+
|
| 164 |
+
MHNfs was trained on the FS-Mol dataset which includes 5120 tasks (roughly
|
| 165 |
+
5000 tasks were used for training, rest for evaluation). The training tasks are
|
| 166 |
+
listed here: <a href= https://github.com/microsoft/FS-Mol/tree/main/datasets/targets
|
| 167 |
+
target="_blank">https://github.com/microsoft/FS-Mol/tree/main/datasets/targets</a>.
|
| 168 |
+
</div>
|
| 169 |
+
''')
|
| 170 |
+
|
| 171 |
+
example_trustworthy_text = ('''
|
| 172 |
+
<div style="text-align: justify">
|
| 173 |
+
Since the predicitve model has seen a lot of kinase related tasks during training,
|
| 174 |
+
the model is expected to generally perform well on kinase targets. For this example,
|
| 175 |
+
we use data for the target
|
| 176 |
+
<a href=https://www.ebi.ac.uk/chembl/target_report_card/CHEMBL5914/
|
| 177 |
+
target="_blank">CHEMBL5914</a>. Notably, this specific kinase has not been seen
|
| 178 |
+
during training. Precisely, we use the available inhibition data while molecules
|
| 179 |
+
with an inhibition value greater (smaller) than 50 % are considered as active
|
| 180 |
+
(inactive).<br>
|
| 181 |
+
|
| 182 |
+
From the known available data, we have selected 4 "known" active molecules,
|
| 183 |
+
8 "known" inactive molecules, and 11 molecules to predict.<br>
|
| 184 |
+
|
| 185 |
+
<b>Molecules to predict</b>:
|
| 186 |
+
<div style="background-color: #efefef">
|
| 187 |
+
FC(F)(F)c1ccc(Cl)cc1CN1CCNc2ncc(-c3ccnc(N4CCNCC4)c3)cc21,<br>
|
| 188 |
+
CS(=O)(=O)c1ccc(-n2nc(-c3cnc4[nH]ccc4c3)c3c(N)ncnc32)cc1,<br>
|
| 189 |
+
O=C(Nc1ccccc1Cl)c1cnc2ccc(C3CCNCC3)cn12.O=C(O)C(=O)O,<br>
|
| 190 |
+
CC(C)n1cnc2c(Nc3cccc(Cl)c3)nc(N[C@@H]3CCCC[C@@H]3N)nc21,<br>
|
| 191 |
+
Nc1ncc(-c2ccc(NS(=O)(=O)C3CC3)cc2F)cc1-c1ccc2c(c1)CCNC2=O,<br>
|
| 192 |
+
CCN1CCN(Cc2ccc(NC(=O)c3ccc(C)c(C#Cc4cccnc4)c3)cc2C(F)(F)F)CC1,<br>
|
| 193 |
+
CN1CCN(c2ccc(-c3cnc4c(c3)N(Cc3cc(Cl)ccc3C(F)(F)F)CCN4)cn2)CC1,<br>
|
| 194 |
+
CC(C)n1nc(-c2cnc(N)c(OC(F)(F)F)c2)cc1[C@H]1[C@@H]2CN(C3COC3)C[C@@H]21,<br>
|
| 195 |
+
Nc1ncc(-c2cc([C@H]3[C@@H]4CN(C5COC5)C[C@@H]43)n(CC3CC3)n2)cc1C(F)(F)F,<br>
|
| 196 |
+
Cc1ccc(NC(=O)C2(C(=O)Nc3ccc(Nc4ncc(F)c(-c5cc(F)c6nc(C)n(C(C)C)c6c5)n4)cc3)CC2)cc1,<br>
|
| 197 |
+
C[C@@H](Oc1cc(-c2cnn(C3CCNCC3)c2)cnc1N)c1c(Cl)ccc(F)c1Cl
|
| 198 |
+
</div><br>
|
| 199 |
+
|
| 200 |
+
<b>Known active molecules</b>:
|
| 201 |
+
<div style="background-color: #efefef">
|
| 202 |
+
CC(=O)N1CCN(c2cc(-c3cnc4c(c3)N(Cc3cc(Cl)ccc3C(F)(F)F)CCN4)ccn2)CC1,<br>
|
| 203 |
+
CS(=O)(=O)c1cccc(Nc2nccc(-c3sc(N4CCOCC4)nc3-c3cccc(NS(=O)(=O)c4c(F)cccc4F)c3)n2)c1,<br>
|
| 204 |
+
COc1cnccc1Nc1nc(-c2nn(Cc3c(F)cc(OCCO)cc3F)c3ccccc23)ncc1OC,<br>
|
| 205 |
+
CN(C)[C@@H]1CC[C@@]2(C)[C@@H](CC[C@@H]3[C@@H]2CC[C@]2(C)C(c4cccc5cnccc45)=CC[C@@H]32)C1<br>
|
| 206 |
+
</div><br>
|
| 207 |
+
|
| 208 |
+
<b>Known inactive molecules</b>:
|
| 209 |
+
<div style="background-color: #efefef">
|
| 210 |
+
c1cc(-c2c[nH]c3cnccc23)ccn1,<br>
|
| 211 |
+
COc1ccc2c3ccnc(C(F)(F)F)c3n(CCCCN)c2c1,<br>
|
| 212 |
+
CNS(=O)(=O)c1ccc(N(C)C)c(Nc2ncnc3cc(OC)c(OC)cc23)c1,<br>
|
| 213 |
+
CN(C1CC1)S(=O)(=O)c1ccc(-c2cnc(N)c(-c3ccc4c(c3)CCNC4=O)c2)c(F)c1,<br>
|
| 214 |
+
CCN1CCN(Cc2ccc(NC(=O)c3ccc(C)c(C#Cc4cnc5[nH]ccc5c4)c3)cc2C(F)(F)F)CC1,<br>
|
| 215 |
+
CC(C)n1cc(-c2cc(-c3ccc(CN4CCOCC4)cc3)cnc2N)nn1,<br>
|
| 216 |
+
CC(C)(O)[C@H](F)CN1Cc2cc(NC(=O)c3cnn4cccnc34)c(N3CCOCC3)cc2C1=O,<br>
|
| 217 |
+
[2H]C([2H])([2H])C1(C([2H])([2H])[2H])Cn2nc(-c3ccc(F)cn3)c(-c3ccnc4[nH]ncc34)c2CO1<br>
|
| 218 |
+
</div><br>
|
| 219 |
+
|
| 220 |
+
<b>Predictions</b>:<br>
|
| 221 |
+
|
| 222 |
+
</div>
|
| 223 |
+
''')
|
| 224 |
+
|
| 225 |
+
example_nottrustworthy_text = ('''
|
| 226 |
+
<div style="text-align: justify">
|
| 227 |
+
For this example, we use data for the auxiliary transport protein target
|
| 228 |
+
<a href=https://www.ebi.ac.uk/chembl/target_report_card/CHEMBL5738/
|
| 229 |
+
target="_blank">CHEMBL5738</a>. Precisely, we use the available Ki data
|
| 230 |
+
while molecules with a pCHEMBL value greater (smaller) than 5 are considered
|
| 231 |
+
as active (inactive).<br>
|
| 232 |
+
|
| 233 |
+
From the known available data, we have selected 4 "known" active molecules,
|
| 234 |
+
3 "known" inactive molecules, and 10 molecules to predict.<br>
|
| 235 |
+
|
| 236 |
+
<b>Molecules to predict</b>:
|
| 237 |
+
<div style="background-color: #efefef">
|
| 238 |
+
CC(C(=O)O)c1ccc(-c2ccccc2)c(F)c1,<br>
|
| 239 |
+
O=S(=O)(O)Oc1cccc2cccc(Nc3ccccc3)c12,<br>
|
| 240 |
+
CCCCCCCC/C=C\CCCCCCCC(=O)O,<br>
|
| 241 |
+
C[C@]12C=CC(=O)C=C1CC[C@@H]1[C@@H]2[C@@H](O)C[C@@]2(C)[C@H]1CC[C@]2(O)C(=O)CO,<br>
|
| 242 |
+
CCOC(=O)C(C)(C)Oc1ccc(Cl)cc1,<br>
|
| 243 |
+
Cc1ccc(Cl)c(Nc2ccccc2C(=O)O)c1Cl,<br>
|
| 244 |
+
O=C(O)Cc1ccccc1Nc1c(Cl)cccc1Cl,<br>
|
| 245 |
+
CC(C)(Oc1ccc(CCNC(=O)c2ccc(Cl)cc2)cc1)C(=O)O,<br>
|
| 246 |
+
O=C(c1ccccc1)c1ccc2n1CCC2C(=O)O,<br>
|
| 247 |
+
CC(C)OC(=O)C(C)(C)Oc1ccc(C(=O)c2ccc(Cl)cc2)cc1<br>
|
| 248 |
+
</div><br>
|
| 249 |
+
|
| 250 |
+
<b>Known active molecules</b>:
|
| 251 |
+
<div style="background-color: #efefef">
|
| 252 |
+
CC(C(=O)O)c1ccc(N2Cc3ccccc3C2=O)cc1,<br>
|
| 253 |
+
CN1C(=O)CN=C(c2ccccc2)c2cc(Cl)ccc21,<br>
|
| 254 |
+
CC(C)(Oc1ccc(C(=O)c2ccc(Cl)cc2)cc1)C(=O)O,<br>
|
| 255 |
+
CC(=O)[C@H]1CC[C@H]2[C@@H]3CCC4=CC(=O)CC[C@]4(C)[C@H]3CC[C@]12C
|
| 256 |
+
|
| 257 |
+
</div><br>
|
| 258 |
+
|
| 259 |
+
<b>Known inactive molecules</b>:
|
| 260 |
+
<div style="background-color: #efefef">
|
| 261 |
+
CC(C)Cc1ccc(C(C)C(=O)O)cc1,<br>
|
| 262 |
+
O=C1Nc2ccc(Cl)cc2C(c2ccccc2Cl)=NC1O,<br>
|
| 263 |
+
C[C@@H]1C[C@H]2[C@@H]3CCC4=CC(=O)C=C[C@]4(C)[C@@]3(F)[C@@H](O)C[C@]2(C)[C@@]1(O)C(=O)CO
|
| 264 |
+
</div><br>
|
| 265 |
+
|
| 266 |
+
<b>Predictions</b>:<br>
|
| 267 |
+
|
| 268 |
+
</div>
|
| 269 |
+
''')
|
src/app/layout.py
ADDED
|
@@ -0,0 +1,439 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
This file defines the layout of the app including the header, sidebar, and tabs in the
|
| 3 |
+
main content area.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
#---------------------------------------------------------------------------------------
|
| 7 |
+
# Imports
|
| 8 |
+
import streamlit as st
|
| 9 |
+
import streamlit.components.v1 as components
|
| 10 |
+
from PIL import Image
|
| 11 |
+
import pandas as pd
|
| 12 |
+
import yaml
|
| 13 |
+
|
| 14 |
+
from src.data_preprocessing.create_descriptors import handle_inputs
|
| 15 |
+
from src.app.constants import (summary_text,
|
| 16 |
+
mhnfs_text,
|
| 17 |
+
citation_text,
|
| 18 |
+
few_shot_learning_text,
|
| 19 |
+
under_the_hood_text,
|
| 20 |
+
usage_text,
|
| 21 |
+
data_text,
|
| 22 |
+
trust_text,
|
| 23 |
+
example_trustworthy_text,
|
| 24 |
+
example_nottrustworthy_text)
|
| 25 |
+
#---------------------------------------------------------------------------------------
|
| 26 |
+
# Global variables
|
| 27 |
+
MAX_INPUT_LENGTH = 20
|
| 28 |
+
|
| 29 |
+
#---------------------------------------------------------------------------------------
|
| 30 |
+
# Functions
|
| 31 |
+
|
| 32 |
+
class LayoutMaker():
|
| 33 |
+
"""
|
| 34 |
+
This class includes all the design choices regarding the layout of the app. This
|
| 35 |
+
class can be used in the main file to define header, sidebar, and main content area.
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
def __init__(self):
|
| 39 |
+
|
| 40 |
+
# Initialize the inputs dictionary
|
| 41 |
+
self.inputs = dict() # this will be the storage for query and support set inputs
|
| 42 |
+
self.inputs_lists = dict()
|
| 43 |
+
|
| 44 |
+
# Initialize prediction storage
|
| 45 |
+
self.predictions = None
|
| 46 |
+
|
| 47 |
+
# Buttons
|
| 48 |
+
self.buttons = dict() # this will be the storage for buttons
|
| 49 |
+
|
| 50 |
+
# content
|
| 51 |
+
self.summary_text = summary_text
|
| 52 |
+
self.mhnfs_text = mhnfs_text
|
| 53 |
+
self.citation_text = citation_text
|
| 54 |
+
self.few_shot_learning_text = few_shot_learning_text
|
| 55 |
+
self.under_the_hood_text = under_the_hood_text
|
| 56 |
+
self.usage_text = usage_text
|
| 57 |
+
self.data_text = data_text
|
| 58 |
+
self.trust_text = trust_text
|
| 59 |
+
self.example_trustworthy_text = example_trustworthy_text
|
| 60 |
+
self.example_nottrustworthy_text = example_nottrustworthy_text
|
| 61 |
+
|
| 62 |
+
self.df_trustworthy = pd.read_csv("./assets/example_csv/predictions/"
|
| 63 |
+
"trustworthy_example.csv")
|
| 64 |
+
self.df_nottrustworthy = pd.read_csv("./assets/example_csv/predictions/"
|
| 65 |
+
"nottrustworthy_example.csv")
|
| 66 |
+
|
| 67 |
+
self.max_input_length = MAX_INPUT_LENGTH
|
| 68 |
+
|
| 69 |
+
def make_sidebar(self):
|
| 70 |
+
"""
|
| 71 |
+
This function defines the sidebar of the app. It includes the logo, query box,
|
| 72 |
+
support set boxes, and predict buttons.
|
| 73 |
+
It returns the stored inputs (for query and support set) and the buttons which
|
| 74 |
+
allow for user interactions.
|
| 75 |
+
"""
|
| 76 |
+
with st.sidebar:
|
| 77 |
+
# Logo
|
| 78 |
+
logo = Image.open("./assets/logo.png")
|
| 79 |
+
st.image(logo)
|
| 80 |
+
st.divider()
|
| 81 |
+
|
| 82 |
+
# Query box
|
| 83 |
+
self._make_query_box()
|
| 84 |
+
st.divider()
|
| 85 |
+
|
| 86 |
+
# Support set actives box
|
| 87 |
+
self._make_active_support_set_box()
|
| 88 |
+
st.divider()
|
| 89 |
+
|
| 90 |
+
# Support set inactives box
|
| 91 |
+
self._make_inactive_support_set_box()
|
| 92 |
+
st.divider()
|
| 93 |
+
|
| 94 |
+
# Predict buttons
|
| 95 |
+
self.buttons["predict"] = st.button("Predict...")
|
| 96 |
+
self.buttons["reset"] = st.button("Reset")
|
| 97 |
+
|
| 98 |
+
return self.inputs, self.buttons
|
| 99 |
+
|
| 100 |
+
def make_header(self):
|
| 101 |
+
"""
|
| 102 |
+
This function defines the header of the app. It consists only of a png image
|
| 103 |
+
in which the title and an overview is given.
|
| 104 |
+
"""
|
| 105 |
+
|
| 106 |
+
header_container = st.container()
|
| 107 |
+
with header_container:
|
| 108 |
+
header = Image.open("./assets/header.png")
|
| 109 |
+
st.image(header)
|
| 110 |
+
|
| 111 |
+
def make_main_content_area(self,
|
| 112 |
+
predictor,
|
| 113 |
+
inputs,
|
| 114 |
+
buttons,
|
| 115 |
+
create_prediction_df: callable,
|
| 116 |
+
create_molecule_grid_plot: callable):
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
tab1, tab2, tab3, tab4 = st.tabs(["Predictions",
|
| 120 |
+
"Paper / Cite",
|
| 121 |
+
"Additional Information",
|
| 122 |
+
"Examples"])
|
| 123 |
+
|
| 124 |
+
# Results tab
|
| 125 |
+
with tab1:
|
| 126 |
+
self._fill_tab_with_results_content(predictor,
|
| 127 |
+
inputs,
|
| 128 |
+
buttons,
|
| 129 |
+
create_prediction_df,
|
| 130 |
+
create_molecule_grid_plot)
|
| 131 |
+
|
| 132 |
+
# Paper tab
|
| 133 |
+
with tab2:
|
| 134 |
+
self._fill_paper_and_citation_tab()
|
| 135 |
+
|
| 136 |
+
# More explanations tab
|
| 137 |
+
with tab3:
|
| 138 |
+
self._fill_more_explanations_tab()
|
| 139 |
+
|
| 140 |
+
with tab4:
|
| 141 |
+
self._fill_examples_tab()
|
| 142 |
+
|
| 143 |
+
def _make_query_box(self):
|
| 144 |
+
"""
|
| 145 |
+
This function
|
| 146 |
+
a) defines the query box and
|
| 147 |
+
b) stores the query input in the inputs dictionary
|
| 148 |
+
"""
|
| 149 |
+
|
| 150 |
+
st.info(":blue[Molecules to predict:]", icon="❓")
|
| 151 |
+
|
| 152 |
+
query_container = st.container()
|
| 153 |
+
with query_container:
|
| 154 |
+
input_choice = st.radio(
|
| 155 |
+
"Input your data in SMILES notation via:", ["Text box", "CSV upload"]
|
| 156 |
+
)
|
| 157 |
+
if input_choice == "Text box":
|
| 158 |
+
query_input = st.text_area(
|
| 159 |
+
label="SMILES input for query molecules",
|
| 160 |
+
label_visibility="hidden",
|
| 161 |
+
key="query_textbox",
|
| 162 |
+
value="CC(C)Sc1nc(C(C)(C)C)nc(OCC(=O)O)c1C#N, "
|
| 163 |
+
"Cc1nc(NCc2cccnc2)cc(=O)n1CC(=O)O",
|
| 164 |
+
)
|
| 165 |
+
elif input_choice == "CSV upload":
|
| 166 |
+
query_file = st.file_uploader(key="query_csv",
|
| 167 |
+
label = "CSV upload for query mols",
|
| 168 |
+
label_visibility="hidden")
|
| 169 |
+
if query_file is not None:
|
| 170 |
+
query_input = pd.read_csv(query_file)
|
| 171 |
+
else: query_input = None
|
| 172 |
+
|
| 173 |
+
# Update storage
|
| 174 |
+
self.inputs["query"] = query_input
|
| 175 |
+
|
| 176 |
+
def _make_active_support_set_box(self):
|
| 177 |
+
"""
|
| 178 |
+
This function
|
| 179 |
+
a) defines the active support set box and
|
| 180 |
+
b) stores the active support set input in the inputs dictionary
|
| 181 |
+
"""
|
| 182 |
+
|
| 183 |
+
st.info(":blue[Known active molecules:]", icon="✨")
|
| 184 |
+
active_container = st.container()
|
| 185 |
+
with active_container:
|
| 186 |
+
active_input_choice = st.radio(
|
| 187 |
+
"Input your data in SMILES notation via:",
|
| 188 |
+
["Text box", "CSV upload"],
|
| 189 |
+
key="active_input_choice",
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
if active_input_choice == "Text box":
|
| 193 |
+
support_active_input = st.text_area(
|
| 194 |
+
label="SMILES input for active support set molecules",
|
| 195 |
+
label_visibility="hidden",
|
| 196 |
+
key="active_textbox",
|
| 197 |
+
value="Cc1nc(NCC2CCCCC2)c(C#N)c(=O)n1CC(=O)O, "
|
| 198 |
+
"CSc1nc(C(C)C)nc(OCC(=O)O)c1C#N"
|
| 199 |
+
)
|
| 200 |
+
elif active_input_choice == "CSV upload":
|
| 201 |
+
support_active_file = st.file_uploader(
|
| 202 |
+
key="support_active_csv",
|
| 203 |
+
label = "CSV upload for active support set molecules",
|
| 204 |
+
label_visibility="hidden"
|
| 205 |
+
)
|
| 206 |
+
if support_active_file is not None:
|
| 207 |
+
support_active_input = pd.read_csv(support_active_file)
|
| 208 |
+
else: support_active_input = None
|
| 209 |
+
|
| 210 |
+
# Update storage
|
| 211 |
+
self.inputs["support_active"] = support_active_input
|
| 212 |
+
|
| 213 |
+
def _make_inactive_support_set_box(self):
|
| 214 |
+
st.info(":blue[Known inactive molecules:]", icon="✨")
|
| 215 |
+
inactive_container = st.container()
|
| 216 |
+
with inactive_container:
|
| 217 |
+
inactive_input_choice = st.radio(
|
| 218 |
+
"Input your data in SMILES notation via:",
|
| 219 |
+
["Text box", "CSV upload"],
|
| 220 |
+
key="inactive_input_choice",
|
| 221 |
+
)
|
| 222 |
+
if inactive_input_choice == "Text box":
|
| 223 |
+
support_inactive_input = st.text_area(
|
| 224 |
+
label="SMILES input for inactive support set molecules",
|
| 225 |
+
label_visibility="hidden",
|
| 226 |
+
key="inactive_textbox",
|
| 227 |
+
value="CSc1nc(C)nc(OCC(=O)O)c1C#N, "
|
| 228 |
+
"CSc1nc(C)n(CC(=O)O)c(=O)c1C#N"
|
| 229 |
+
)
|
| 230 |
+
elif inactive_input_choice == "CSV upload":
|
| 231 |
+
support_inactive_file = st.file_uploader(
|
| 232 |
+
key="support_inactive_csv",
|
| 233 |
+
label = "CSV upload for inactive support set molecules",
|
| 234 |
+
label_visibility="hidden"
|
| 235 |
+
)
|
| 236 |
+
if support_inactive_file is not None:
|
| 237 |
+
support_inactive_input = pd.read_csv(
|
| 238 |
+
support_inactive_file
|
| 239 |
+
)
|
| 240 |
+
else: support_inactive_input = None
|
| 241 |
+
|
| 242 |
+
# Update storage
|
| 243 |
+
self.inputs["support_inactive"] = support_inactive_input
|
| 244 |
+
|
| 245 |
+
def _fill_tab_with_results_content(self, predictor, inputs, buttons,
|
| 246 |
+
create_prediction_df, create_molecule_grid_plot):
|
| 247 |
+
tab_container = st.container()
|
| 248 |
+
with tab_container:
|
| 249 |
+
# Info
|
| 250 |
+
st.info(":blue[Summary:]", icon="🚀")
|
| 251 |
+
st.markdown(self.summary_text)
|
| 252 |
+
|
| 253 |
+
# Results
|
| 254 |
+
st.info(":blue[Results:]",icon="👨💻")
|
| 255 |
+
|
| 256 |
+
if buttons['predict']:
|
| 257 |
+
|
| 258 |
+
# Check 1: Are all inputs provided?
|
| 259 |
+
if (inputs['query'] is None or
|
| 260 |
+
inputs['support_active'] is None or
|
| 261 |
+
inputs['support_inactive'] is None):
|
| 262 |
+
st.error("You didn't provide all necessary inputs.\n\n"
|
| 263 |
+
"Please provide all three necessary inputs via the "
|
| 264 |
+
"sidebar and hit the predict button again.")
|
| 265 |
+
else:
|
| 266 |
+
# Check 2: Less than max allowed molecules provided?
|
| 267 |
+
max_input_length = 0
|
| 268 |
+
for key, input in inputs.items():
|
| 269 |
+
input_list = handle_inputs(input)
|
| 270 |
+
self.inputs_lists[key] = input_list
|
| 271 |
+
max_input_length = max(max_input_length, len(input_list))
|
| 272 |
+
|
| 273 |
+
if max_input_length > self.max_input_length:
|
| 274 |
+
st.error("You provided too many molecules. The number of "
|
| 275 |
+
"molecules for each input is restricted to "
|
| 276 |
+
f"{self.max_input_length}.\n\n"
|
| 277 |
+
"For larger screenings, we suggest to clone the repo "
|
| 278 |
+
"and to run the model locally.")
|
| 279 |
+
else:
|
| 280 |
+
# Progress bar
|
| 281 |
+
progress_bar_text = ("I'm predicting activities. This might "
|
| 282 |
+
"need some minutes. Please wait...")
|
| 283 |
+
progress_bar = st.progress(50, text=progress_bar_text)
|
| 284 |
+
|
| 285 |
+
# Results table
|
| 286 |
+
df = self._predict_and_create_results_table(predictor,
|
| 287 |
+
inputs,
|
| 288 |
+
create_prediction_df)
|
| 289 |
+
|
| 290 |
+
progress_bar_text = ("Done. Here are the results:")
|
| 291 |
+
progress_bar = progress_bar.progress(100, text=progress_bar_text)
|
| 292 |
+
st.dataframe(df, use_container_width=True)
|
| 293 |
+
|
| 294 |
+
col1, col2, col3, col4 = st.columns([1,1,1,1])
|
| 295 |
+
# Provide download button for predictions
|
| 296 |
+
with col2:
|
| 297 |
+
self.buttons["download_results"] = st.download_button(
|
| 298 |
+
"Download predictions as CSV",
|
| 299 |
+
self._convert_df_to_binary(df),
|
| 300 |
+
file_name="predictions.csv",
|
| 301 |
+
)
|
| 302 |
+
|
| 303 |
+
# Provide download button for inputs
|
| 304 |
+
with col3:
|
| 305 |
+
with open("inputs.yml", 'w') as fl:
|
| 306 |
+
self.buttons["download_inputs"] = st.download_button(
|
| 307 |
+
"Download inputs as YML",
|
| 308 |
+
self._convert_to_yml(self.inputs_lists),
|
| 309 |
+
file_name="inputs.yml",
|
| 310 |
+
)
|
| 311 |
+
st.divider()
|
| 312 |
+
|
| 313 |
+
# Results grid
|
| 314 |
+
st.info(":blue[Grid plot of the predicted molecules:]",
|
| 315 |
+
icon="📊")
|
| 316 |
+
mol_html_grid = create_molecule_grid_plot(df)
|
| 317 |
+
components.html(mol_html_grid, height=1000, scrolling=True)
|
| 318 |
+
|
| 319 |
+
elif buttons['reset']:
|
| 320 |
+
self._reset()
|
| 321 |
+
|
| 322 |
+
def _fill_paper_and_citation_tab(self):
|
| 323 |
+
st.info(":blue[**Paper: Context-enriched molecule representations improve "
|
| 324 |
+
"few-shot drug discovery**]", icon="📄")
|
| 325 |
+
st.markdown(self.mhnfs_text, unsafe_allow_html=True)
|
| 326 |
+
st.image("./assets/mhnfs_overview.png")
|
| 327 |
+
st.write("")
|
| 328 |
+
st.write("")
|
| 329 |
+
st.write("")
|
| 330 |
+
st.info(":blue[**Cite us / BibTex**]", icon="📚")
|
| 331 |
+
st.markdown(self.citation_text)
|
| 332 |
+
|
| 333 |
+
def _fill_more_explanations_tab(self):
|
| 334 |
+
st.info(":blue[**Under the hood**]", icon="⚙️")
|
| 335 |
+
st.markdown(self.under_the_hood_text, unsafe_allow_html=True)
|
| 336 |
+
st.write("")
|
| 337 |
+
st.write("")
|
| 338 |
+
|
| 339 |
+
st.info(":blue[**About few-shot learning and the model MHNfs**]", icon="🎯")
|
| 340 |
+
st.markdown(self.few_shot_learning_text, unsafe_allow_html=True)
|
| 341 |
+
st.write("")
|
| 342 |
+
st.write("")
|
| 343 |
+
|
| 344 |
+
st.info(":blue[**Usage**]", icon="🎛️")
|
| 345 |
+
st.markdown(self.usage_text, unsafe_allow_html=True)
|
| 346 |
+
st.write("")
|
| 347 |
+
st.write("")
|
| 348 |
+
|
| 349 |
+
st.info(":blue[**How to provide the data**]", icon="📀")
|
| 350 |
+
st.markdown(self.data_text, unsafe_allow_html=True)
|
| 351 |
+
st.write("")
|
| 352 |
+
st.write("")
|
| 353 |
+
|
| 354 |
+
st.info(":blue[**When to trust the predictions**]", icon="🔍")
|
| 355 |
+
st.markdown(self.trust_text, unsafe_allow_html=True)
|
| 356 |
+
|
| 357 |
+
def _fill_examples_tab(self):
|
| 358 |
+
st.info(":blue[**Example for trustworthy predictions**]", icon="✅")
|
| 359 |
+
st.markdown(self.example_trustworthy_text, unsafe_allow_html=True)
|
| 360 |
+
st.dataframe(self.df_trustworthy, use_container_width=True)
|
| 361 |
+
st.markdown("**Plot: Predictions for active and inactive molecules (model AUC="
|
| 362 |
+
"0.96**)")
|
| 363 |
+
prediction_plot_tw = Image.open("./assets/example_csv/predictions/"
|
| 364 |
+
"trustworthy_example.png")
|
| 365 |
+
st.image(prediction_plot_tw)
|
| 366 |
+
st.write("")
|
| 367 |
+
st.write("")
|
| 368 |
+
|
| 369 |
+
st.info(":blue[**Example for not trustworthy predictions**]", icon="⛔️")
|
| 370 |
+
st.markdown(self.example_nottrustworthy_text, unsafe_allow_html=True)
|
| 371 |
+
st.dataframe(self.df_nottrustworthy, use_container_width=True)
|
| 372 |
+
st.markdown("**Plot: Predictions for active and inactive molecules (model AUC="
|
| 373 |
+
"0.42**)")
|
| 374 |
+
prediction_plot_ntw = Image.open("./assets/example_csv/predictions/"
|
| 375 |
+
"nottrustworthy_example.png")
|
| 376 |
+
st.image(prediction_plot_ntw)
|
| 377 |
+
|
| 378 |
+
def _predict_and_create_results_table(self,
|
| 379 |
+
predictor,
|
| 380 |
+
inputs,
|
| 381 |
+
create_prediction_df: callable):
|
| 382 |
+
|
| 383 |
+
df = create_prediction_df(predictor,
|
| 384 |
+
inputs['query'],
|
| 385 |
+
inputs['support_active'],
|
| 386 |
+
inputs['support_inactive'])
|
| 387 |
+
return df
|
| 388 |
+
|
| 389 |
+
def _reset(self):
|
| 390 |
+
keys = list(st.session_state.keys())
|
| 391 |
+
for key in keys:
|
| 392 |
+
st.session_state.pop(key)
|
| 393 |
+
|
| 394 |
+
def _convert_df_to_binary(_self, df):
|
| 395 |
+
return df.to_csv(index=False).encode('utf-8')
|
| 396 |
+
|
| 397 |
+
def _convert_to_yml(_self, inputs):
|
| 398 |
+
return yaml.dump(inputs)
|
| 399 |
+
content = """
|
| 400 |
+
# Usage
|
| 401 |
+
As soon as you have a few active and inactive molecules for your task, you can
|
| 402 |
+
provide them here and make predictions for new molecules.
|
| 403 |
+
|
| 404 |
+
## About few-shot learning and the model MHNfs
|
| 405 |
+
**Few-shot learning** is a machine learning sub-field which aims to provide
|
| 406 |
+
predictive models for scenarios in which only little data is known/available.
|
| 407 |
+
|
| 408 |
+
**MHNfs** is a few-shot learning model which is specifically designed for drug
|
| 409 |
+
discovery applications. It is built to use the input prompts in a way such that
|
| 410 |
+
the provided available knowledge - i.e. the known active and inactive molecules -
|
| 411 |
+
functions as context to predict the activity of the new requested molecules.
|
| 412 |
+
Precisely, the provided active and inactive molecules are associated with a
|
| 413 |
+
large set of general molecules - called context molecules - to enrich the
|
| 414 |
+
provided information and to remove spurious correlations arising from the
|
| 415 |
+
decoration of molecules. This is analogous to a Large Language Model which would
|
| 416 |
+
not only use the provided information in the current prompt as context but would
|
| 417 |
+
also have access to way more information, e.g. a prompting history.
|
| 418 |
+
|
| 419 |
+
## How to provide the data
|
| 420 |
+
* Molecules have to be provided in SMILES format.
|
| 421 |
+
* You can provide the molecules via the text boxes or via CSV upload.
|
| 422 |
+
- Text box: Replace the pseudo input by directly typing your molecules into
|
| 423 |
+
the text box. Please separate the molecules by comma.
|
| 424 |
+
- CSV upload: Upload a CSV file with the molecules.
|
| 425 |
+
* The CSV file should include a smiles column (both upper and lower
|
| 426 |
+
case "SMILES" are accepted).
|
| 427 |
+
* All other columns will be ignored.
|
| 428 |
+
|
| 429 |
+
## When to trust the predictions
|
| 430 |
+
Just like all other machine learning models, the performance of MHNfs varies
|
| 431 |
+
and, generally, the model works well if the task is somehow close to tasks which
|
| 432 |
+
were used to train the model. The model performance for very different tasks is
|
| 433 |
+
unclear and might be poor.
|
| 434 |
+
|
| 435 |
+
MHNfs was trained on a the FS-Mol dataset which includes 5120 tasks (Roughly
|
| 436 |
+
5000 tasks were used for training, rest for evaluation). The training tasks are
|
| 437 |
+
listed here: https://github.com/microsoft/FS-Mol/tree/main/datasets/targets.
|
| 438 |
+
"""
|
| 439 |
+
return content
|
src/app/prediction_utils.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
This module includes all functions which are called from the main app and are needed to
|
| 3 |
+
make activity predictions and to output the results.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
#---------------------------------------------------------------------------------------
|
| 7 |
+
# Deendencies
|
| 8 |
+
import pandas as pd
|
| 9 |
+
import mols2grid
|
| 10 |
+
#---------------------------------------------------------------------------------------
|
| 11 |
+
# Define functions
|
| 12 |
+
|
| 13 |
+
def create_prediction_df(predictor, query_smiles, support_activces_smiles,
|
| 14 |
+
support_inactives_smiles):
|
| 15 |
+
"""
|
| 16 |
+
This function creates a dataframe with the query molecules and the corresponding
|
| 17 |
+
predictions.
|
| 18 |
+
"""
|
| 19 |
+
# Make predictions
|
| 20 |
+
predictions = predictor.predict(query_smiles, support_activces_smiles,
|
| 21 |
+
support_inactives_smiles)
|
| 22 |
+
|
| 23 |
+
smiles = predictor._return_query_mols_as_list()
|
| 24 |
+
|
| 25 |
+
# Create dataframe
|
| 26 |
+
prediction_df = pd.DataFrame({"Molecule": smiles,
|
| 27 |
+
"Predicted activity": predictions.astype('str')})
|
| 28 |
+
|
| 29 |
+
return prediction_df
|
| 30 |
+
|
| 31 |
+
def create_molecule_grid_plot(df, smiles_col="Molecule"):
|
| 32 |
+
mol_html_grid = mols2grid.display(df,smiles_col=smiles_col)._repr_html_()
|
| 33 |
+
return mol_html_grid
|
src/data_preprocessing/__init__.py
ADDED
|
File without changes
|
src/data_preprocessing/__pycache__/__init__.cpython-36.pyc
ADDED
|
Binary file (167 Bytes). View file
|
|
|
src/data_preprocessing/__pycache__/__init__.cpython-37.pyc
ADDED
|
Binary file (173 Bytes). View file
|
|
|
src/data_preprocessing/__pycache__/constants.cpython-37.pyc
ADDED
|
Binary file (1.61 kB). View file
|
|
|
src/data_preprocessing/__pycache__/create_descriptors.cpython-36.pyc
ADDED
|
Binary file (2.39 kB). View file
|
|
|
src/data_preprocessing/__pycache__/create_descriptors.cpython-37.pyc
ADDED
|
Binary file (4.19 kB). View file
|
|
|
src/data_preprocessing/__pycache__/create_model_inputs.cpython-37.pyc
ADDED
|
Binary file (1.29 kB). View file
|
|
|
src/data_preprocessing/__pycache__/utils.cpython-37.pyc
ADDED
|
Binary file (7.49 kB). View file
|
|
|
src/data_preprocessing/constants.py
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
USED_200_DESCR = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,25,26,27,28,29,30, 31,32,33,
|
| 2 |
+
34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,
|
| 3 |
+
57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,
|
| 4 |
+
80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,
|
| 5 |
+
102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,
|
| 6 |
+
119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,
|
| 7 |
+
136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,
|
| 8 |
+
153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,
|
| 9 |
+
170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,
|
| 10 |
+
187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,
|
| 11 |
+
204,205,206,207]
|
src/data_preprocessing/create_descriptors.py
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
This file includes all necessary code to preprocess molecules (assumed to be in SMILES
|
| 3 |
+
format) and create descriptors which can be fed into MHNfs.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
#---------------------------------------------------------------------------------------
|
| 7 |
+
# Dependencies
|
| 8 |
+
import numpy as np
|
| 9 |
+
import pandas as pd
|
| 10 |
+
import pickle
|
| 11 |
+
from typing import List
|
| 12 |
+
from rdkit import Chem, DataStructs
|
| 13 |
+
from rdkit.Chem.rdchem import Mol
|
| 14 |
+
from rdkit.Chem import Descriptors, rdFingerprintGenerator
|
| 15 |
+
|
| 16 |
+
from src.data_preprocessing.constants import USED_200_DESCR
|
| 17 |
+
from src.data_preprocessing.utils import Standardizer
|
| 18 |
+
|
| 19 |
+
#---------------------------------------------------------------------------------------
|
| 20 |
+
# Define main function
|
| 21 |
+
|
| 22 |
+
def preprocess_molecules(input_molecules: [str, List[str], pd.DataFrame]):
|
| 23 |
+
"""
|
| 24 |
+
This function preprocesses molecules (assumed to be in SMILES format) and creates
|
| 25 |
+
descriptors which can be fed into MHNfs.
|
| 26 |
+
"""
|
| 27 |
+
|
| 28 |
+
# Load needed objects
|
| 29 |
+
current_loc = __file__.rsplit("/",3)[0]
|
| 30 |
+
with open(current_loc + "/assets/data_preprocessing_objects/scaler_fitted.pkl",
|
| 31 |
+
"rb") as fl:
|
| 32 |
+
scaler = pickle.load(fl)
|
| 33 |
+
|
| 34 |
+
with open(current_loc + "/assets/data_preprocessing_objects/ecdfs.pkl", "rb") as fl:
|
| 35 |
+
ecdfs = pickle.load(fl)
|
| 36 |
+
|
| 37 |
+
# Ensure that input_molecules is an Iterable with strs
|
| 38 |
+
input_smiles = handle_inputs(input_molecules)
|
| 39 |
+
|
| 40 |
+
# Create cleanded rdkit mol objects
|
| 41 |
+
input_molecules = create_cleaned_mol_objects(input_smiles)
|
| 42 |
+
|
| 43 |
+
# Create fingerprints and descriptors
|
| 44 |
+
ecfps = create_ecfp_fps(input_molecules)
|
| 45 |
+
rdkit_descrs = create_rdkit_descriptors(input_molecules)
|
| 46 |
+
|
| 47 |
+
# Create quantils
|
| 48 |
+
rdkit_descr_quantils = create_quantils(rdkit_descrs, ecdfs)
|
| 49 |
+
|
| 50 |
+
# Concatenate features
|
| 51 |
+
raw_features = np.concatenate((ecfps, rdkit_descr_quantils), axis=1)
|
| 52 |
+
|
| 53 |
+
# Normalize feature vectors
|
| 54 |
+
normalized_features = scaler.transform(raw_features)
|
| 55 |
+
|
| 56 |
+
# Return feature vectors
|
| 57 |
+
return normalized_features
|
| 58 |
+
|
| 59 |
+
#---------------------------------------------------------------------------------------
|
| 60 |
+
# Define helper functions
|
| 61 |
+
def handle_inputs(input_molecules: [str, List[str], pd.DataFrame]):
|
| 62 |
+
"""
|
| 63 |
+
This function handles the input molecules.
|
| 64 |
+
"""
|
| 65 |
+
|
| 66 |
+
if isinstance(input_molecules, list):
|
| 67 |
+
return input_molecules
|
| 68 |
+
|
| 69 |
+
elif isinstance(input_molecules, pd.DataFrame):
|
| 70 |
+
input_molecules.columns = [c.lower() for c in input_molecules.columns]
|
| 71 |
+
if "smiles" not in input_molecules.columns:
|
| 72 |
+
raise ValueError(("Input DataFrame must have a column named 'Smiles'."))
|
| 73 |
+
iterable = list(input_molecules["smiles"].values)
|
| 74 |
+
return iterable
|
| 75 |
+
|
| 76 |
+
elif isinstance(input_molecules, str):
|
| 77 |
+
smiles_list = input_molecules.split(",")
|
| 78 |
+
smiles_list_cleaned = [smiles.strip() for smiles in smiles_list]
|
| 79 |
+
|
| 80 |
+
smiles_list_cleaned = [smiles for smiles in smiles_list_cleaned if smiles != ""]
|
| 81 |
+
return smiles_list_cleaned
|
| 82 |
+
else:
|
| 83 |
+
raise TypeError(("Input molecules must be a string,a list of strings or a "
|
| 84 |
+
"pandas DataFrame."))
|
| 85 |
+
|
| 86 |
+
def create_ecfp_fps(mols: List[Mol]) -> np.ndarray:
|
| 87 |
+
"""
|
| 88 |
+
This function ECFP fingerprints for a list of molecules.
|
| 89 |
+
"""
|
| 90 |
+
ecfps = list()
|
| 91 |
+
|
| 92 |
+
for mol in mols:
|
| 93 |
+
fp_sparse_vec = rdFingerprintGenerator.GetCountFPs(
|
| 94 |
+
[mol], fpType=rdFingerprintGenerator.MorganFP
|
| 95 |
+
)[0]
|
| 96 |
+
fp = np.zeros((0,), np.int8)
|
| 97 |
+
DataStructs.ConvertToNumpyArray(fp_sparse_vec, fp)
|
| 98 |
+
|
| 99 |
+
ecfps.append(fp)
|
| 100 |
+
|
| 101 |
+
return np.array(ecfps)
|
| 102 |
+
|
| 103 |
+
def create_rdkit_descriptors(mols: List[Mol]) -> np.ndarray:
|
| 104 |
+
"""
|
| 105 |
+
This function creates RDKit descriptors for a list of molecules.
|
| 106 |
+
"""
|
| 107 |
+
rdkit_descriptors = list()
|
| 108 |
+
|
| 109 |
+
for mol in mols:
|
| 110 |
+
descrs = []
|
| 111 |
+
for _, descr_calc_fn in Descriptors._descList:
|
| 112 |
+
descrs.append(descr_calc_fn(mol))
|
| 113 |
+
|
| 114 |
+
descrs = np.array(descrs)
|
| 115 |
+
descrs = descrs[USED_200_DESCR]
|
| 116 |
+
rdkit_descriptors.append(descrs)
|
| 117 |
+
|
| 118 |
+
return np.array(rdkit_descriptors)
|
| 119 |
+
|
| 120 |
+
def create_quantils(raw_features: np.ndarray, ecdfs: list) -> np.ndarray:
|
| 121 |
+
|
| 122 |
+
quantils = np.zeros_like(raw_features)
|
| 123 |
+
|
| 124 |
+
for column in range(raw_features.shape[1]):
|
| 125 |
+
raw_values = raw_features[:, column].reshape(-1)
|
| 126 |
+
ecdf = ecdfs[column]
|
| 127 |
+
q = ecdf(raw_values)
|
| 128 |
+
quantils[:, column] = q
|
| 129 |
+
|
| 130 |
+
return quantils
|
| 131 |
+
|
| 132 |
+
def create_cleaned_mol_objects(smiles: List[str]) -> List[Mol]:
|
| 133 |
+
"""
|
| 134 |
+
This function creates cleaned RDKit mol objects from a list of SMILES.
|
| 135 |
+
"""
|
| 136 |
+
sm = Standardizer(canon_taut=True)
|
| 137 |
+
|
| 138 |
+
mols = list()
|
| 139 |
+
for smile in smiles:
|
| 140 |
+
#try:
|
| 141 |
+
mol = Chem.MolFromSmiles(smile)
|
| 142 |
+
standardized_mol, _ = sm.standardize_mol(mol)
|
| 143 |
+
can_mol = Chem.MolFromSmiles(Chem.MolToSmiles(standardized_mol))
|
| 144 |
+
mols.append(can_mol)
|
| 145 |
+
return mols
|
| 146 |
+
|
| 147 |
+
#---------------------------------------------------------------------------------------
|
| 148 |
+
|
src/data_preprocessing/create_model_inputs.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
In this file, the input functions for query and support set molecules are defined.
|
| 3 |
+
Input is assumed to be either a SMILES string, a list of SMILES strings, or a pandas
|
| 4 |
+
dataframe.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
#---------------------------------------------------------------------------------------
|
| 8 |
+
# Dependencies
|
| 9 |
+
import pandas as pd
|
| 10 |
+
from typing import List
|
| 11 |
+
import torch
|
| 12 |
+
|
| 13 |
+
from src.data_preprocessing.create_descriptors import preprocess_molecules
|
| 14 |
+
|
| 15 |
+
#---------------------------------------------------------------------------------------
|
| 16 |
+
# Define main functions
|
| 17 |
+
def create_query_input(smiles_input: [str, List[str], pd.DataFrame]):
|
| 18 |
+
"""
|
| 19 |
+
This function creates the input for the query molecules.
|
| 20 |
+
"""
|
| 21 |
+
|
| 22 |
+
# Create vector representation
|
| 23 |
+
numpy_vector_representation = preprocess_molecules(smiles_input)
|
| 24 |
+
assert len(numpy_vector_representation.shape) == 2
|
| 25 |
+
|
| 26 |
+
# Create pytorch tensor
|
| 27 |
+
tensor = torch.from_numpy(numpy_vector_representation).unsqueeze(1).float()
|
| 28 |
+
|
| 29 |
+
return tensor
|
| 30 |
+
|
| 31 |
+
def create_support_set_input(smiles_input: [str, List[str], pd.DataFrame]):
|
| 32 |
+
"""
|
| 33 |
+
This function creates the input for the support set molecules.
|
| 34 |
+
"""
|
| 35 |
+
|
| 36 |
+
# Create vector representation
|
| 37 |
+
numpy_vector_representation = preprocess_molecules(smiles_input)
|
| 38 |
+
assert len(numpy_vector_representation.shape) == 2
|
| 39 |
+
|
| 40 |
+
size = numpy_vector_representation.shape[0]
|
| 41 |
+
|
| 42 |
+
# Create pytorch tensors
|
| 43 |
+
tensor = torch.from_numpy(numpy_vector_representation).unsqueeze(0).float()
|
| 44 |
+
size = torch.tensor(size)
|
| 45 |
+
|
| 46 |
+
return tensor, size
|