Spaces:
Build error
Build error
Fall back to use CPU
Browse files
npc_bert_models/cls_module.py
CHANGED
|
@@ -48,14 +48,8 @@ class NpcBertCLS():
|
|
| 48 |
|
| 49 |
self.model = AutoModelForSequenceClassification.from_pretrained(self.pretrained_model)
|
| 50 |
self.tokenizer = AutoTokenizer.from_pretrained(self.pretrained_model)
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
self.pipeline.model.to('cuda')
|
| 54 |
-
except Exception as e:
|
| 55 |
-
self.pipeline = hf_pipeline("text-classification", model=self.model, tokenizer=self.tokenizer, device='cpu')
|
| 56 |
-
self.logger.warning("No GPU!")
|
| 57 |
-
self.logger.exception(e)
|
| 58 |
-
|
| 59 |
@spaces.GPU
|
| 60 |
def __call__(self, *args: Any) -> Any:
|
| 61 |
"""Performs classification on the given reports.
|
|
@@ -82,6 +76,8 @@ class NpcBertCLS():
|
|
| 82 |
if len(args[0]) < 10:
|
| 83 |
return "Not enough text for classification!"
|
| 84 |
|
|
|
|
|
|
|
| 85 |
pipe_out = self.pipeline(*args)
|
| 86 |
pipe_out = {o['label']: o['score'] for o in pipe_out}
|
| 87 |
return pipe_out
|
|
|
|
| 48 |
|
| 49 |
self.model = AutoModelForSequenceClassification.from_pretrained(self.pretrained_model)
|
| 50 |
self.tokenizer = AutoTokenizer.from_pretrained(self.pretrained_model)
|
| 51 |
+
self.pipeline = hf_pipeline("text-classification", model=self.model, tokenizer=self.tokenizer, device_map='auto')
|
| 52 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
@spaces.GPU
|
| 54 |
def __call__(self, *args: Any) -> Any:
|
| 55 |
"""Performs classification on the given reports.
|
|
|
|
| 76 |
if len(args[0]) < 10:
|
| 77 |
return "Not enough text for classification!"
|
| 78 |
|
| 79 |
+
self.logger.info(f"{self.pipeline.model.device = }")
|
| 80 |
+
|
| 81 |
pipe_out = self.pipeline(*args)
|
| 82 |
pipe_out = {o['label']: o['score'] for o in pipe_out}
|
| 83 |
return pipe_out
|
npc_bert_models/mlm_module.py
CHANGED
|
@@ -47,13 +47,7 @@ class NpcBertMLM():
|
|
| 47 |
|
| 48 |
self.model = AutoModelForMaskedLM.from_pretrained(self.pretrained_model)
|
| 49 |
self.tokenizer = AutoTokenizer.from_pretrained(self.pretrained_model)
|
| 50 |
-
|
| 51 |
-
self.pipeline = hf_pipeline("fill-mask", model=self.model, tokenizer=self.tokenizer, device='cuda')
|
| 52 |
-
self.pipeline.model.to('cuda')
|
| 53 |
-
except Exception as e:
|
| 54 |
-
self.pipeline = hf_pipeline("fill-mask", model=self.model, tokenizer=self.tokenizer, device='cpu')
|
| 55 |
-
self.logger.warning("No GPU")
|
| 56 |
-
self.logger.exception(e)
|
| 57 |
|
| 58 |
@spaces.GPU
|
| 59 |
def __call__(self, *args):
|
|
@@ -77,6 +71,7 @@ class NpcBertMLM():
|
|
| 77 |
msg = "Model was not initialized, have you run load()?"
|
| 78 |
raise BrokenPipeError(msg)
|
| 79 |
|
|
|
|
| 80 |
pipe_out = self.pipeline(*args)
|
| 81 |
# Just use the first output
|
| 82 |
if not isinstance(pipe_out[0], dict):
|
|
|
|
| 47 |
|
| 48 |
self.model = AutoModelForMaskedLM.from_pretrained(self.pretrained_model)
|
| 49 |
self.tokenizer = AutoTokenizer.from_pretrained(self.pretrained_model)
|
| 50 |
+
self.pipeline = hf_pipeline("fill-mask", model=self.model, tokenizer=self.tokenizer, device_map='auto')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
@spaces.GPU
|
| 53 |
def __call__(self, *args):
|
|
|
|
| 71 |
msg = "Model was not initialized, have you run load()?"
|
| 72 |
raise BrokenPipeError(msg)
|
| 73 |
|
| 74 |
+
self.logger.info(f"{self.pipeline.model.device = }")
|
| 75 |
pipe_out = self.pipeline(*args)
|
| 76 |
# Just use the first output
|
| 77 |
if not isinstance(pipe_out[0], dict):
|
npc_bert_models/summary_module.py
CHANGED
|
@@ -30,25 +30,11 @@ class NpcBertGPT2():
|
|
| 30 |
|
| 31 |
self.model = EncoderDecoderModel.from_pretrained(self.pretrained_model)
|
| 32 |
self.tokenizer = AutoTokenizer.from_pretrained(self.pretrained_model)
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
self.pipeline = hf_pipeline("text2text-generation",
|
| 36 |
-
model=self.model,
|
| 37 |
-
tokenizer=self.tokenizer,
|
| 38 |
-
device='cuda',
|
| 39 |
-
num_beams=4,
|
| 40 |
-
do_sample=True,
|
| 41 |
-
top_k = 5,
|
| 42 |
-
temperature=.95,
|
| 43 |
-
early_stopping=True,
|
| 44 |
-
no_repeat_ngram_size=5,
|
| 45 |
-
max_new_tokens=60)
|
| 46 |
-
self.pipeline.model.to('cuda')
|
| 47 |
-
except Exception as e:
|
| 48 |
-
self.pipeline = hf_pipeline("text2text-generation",
|
| 49 |
model=self.model,
|
| 50 |
tokenizer=self.tokenizer,
|
| 51 |
-
|
| 52 |
num_beams=4,
|
| 53 |
do_sample=True,
|
| 54 |
top_k = 5,
|
|
@@ -56,8 +42,7 @@ class NpcBertGPT2():
|
|
| 56 |
early_stopping=True,
|
| 57 |
no_repeat_ngram_size=5,
|
| 58 |
max_new_tokens=60)
|
| 59 |
-
|
| 60 |
-
self.logger.exception(e)
|
| 61 |
|
| 62 |
@spaces.GPU
|
| 63 |
def __call__(self, *args):
|
|
@@ -80,8 +65,7 @@ class NpcBertGPT2():
|
|
| 80 |
msg = "Model was not initialized, have you run load()?"
|
| 81 |
raise BrokenPipeError(msg)
|
| 82 |
|
| 83 |
-
self.logger.info(f"
|
| 84 |
-
self.logger.info("Model: {self.pipeline.model}")
|
| 85 |
pipe_out, = self.pipeline(*args)
|
| 86 |
pipe_out = pipe_out['generated_text']
|
| 87 |
self.logger.info(f"Generated text: {pipe_out}")
|
|
|
|
| 30 |
|
| 31 |
self.model = EncoderDecoderModel.from_pretrained(self.pretrained_model)
|
| 32 |
self.tokenizer = AutoTokenizer.from_pretrained(self.pretrained_model)
|
| 33 |
+
|
| 34 |
+
self.pipeline = hf_pipeline("text2text-generation",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
model=self.model,
|
| 36 |
tokenizer=self.tokenizer,
|
| 37 |
+
device_map='auto',
|
| 38 |
num_beams=4,
|
| 39 |
do_sample=True,
|
| 40 |
top_k = 5,
|
|
|
|
| 42 |
early_stopping=True,
|
| 43 |
no_repeat_ngram_size=5,
|
| 44 |
max_new_tokens=60)
|
| 45 |
+
|
|
|
|
| 46 |
|
| 47 |
@spaces.GPU
|
| 48 |
def __call__(self, *args):
|
|
|
|
| 65 |
msg = "Model was not initialized, have you run load()?"
|
| 66 |
raise BrokenPipeError(msg)
|
| 67 |
|
| 68 |
+
self.logger.info(f"Model: {self.pipeline.model.device = }")
|
|
|
|
| 69 |
pipe_out, = self.pipeline(*args)
|
| 70 |
pipe_out = pipe_out['generated_text']
|
| 71 |
self.logger.info(f"Generated text: {pipe_out}")
|