Spaces:
Running
Running
Cleanup
Browse files
app.py
CHANGED
|
@@ -1,21 +1,17 @@
|
|
| 1 |
import os
|
| 2 |
-
import shutil
|
| 3 |
import tempfile
|
| 4 |
|
| 5 |
os.environ["HF_HUB_CACHE"] = "cache"
|
| 6 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
| 7 |
import gradio as gr
|
| 8 |
|
| 9 |
-
from huggingface_hub import
|
| 10 |
-
from huggingface_hub import snapshot_download
|
| 11 |
from huggingface_hub import whoami
|
| 12 |
from huggingface_hub import ModelCard
|
| 13 |
-
from huggingface_hub import login
|
| 14 |
from huggingface_hub import scan_cache_dir
|
| 15 |
from huggingface_hub import logging
|
| 16 |
|
| 17 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
| 18 |
-
|
| 19 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 20 |
|
| 21 |
from textwrap import dedent
|
|
@@ -23,8 +19,6 @@ from textwrap import dedent
|
|
| 23 |
import mlx_lm
|
| 24 |
from mlx_lm import convert
|
| 25 |
|
| 26 |
-
from typing import Any, Callable, Dict, Generator, List, Optional, Tuple, Type, Union
|
| 27 |
-
|
| 28 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 29 |
|
| 30 |
def clear_hf_cache_space():
|
|
@@ -84,8 +78,7 @@ def upload_to_hub(path, upload_repo, hf_path, token):
|
|
| 84 |
)
|
| 85 |
print(f"Upload successful, go to https://huggingface.co/{upload_repo} for details.")
|
| 86 |
|
| 87 |
-
def process_model(model_id, q_method,oauth_token: gr.OAuthToken | None):
|
| 88 |
-
|
| 89 |
if oauth_token.token is None:
|
| 90 |
raise ValueError("You must be logged in to use MLX-my-repo")
|
| 91 |
|
|
@@ -93,8 +86,6 @@ def process_model(model_id, q_method,oauth_token: gr.OAuthToken | None):
|
|
| 93 |
print(model_name)
|
| 94 |
username = whoami(oauth_token.token)["name"]
|
| 95 |
print(username)
|
| 96 |
-
|
| 97 |
-
# login(token=oauth_token.token, add_to_git_credential=True)
|
| 98 |
|
| 99 |
try:
|
| 100 |
upload_repo = username + "/" + model_name + "-mlx"
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
import tempfile
|
| 3 |
|
| 4 |
os.environ["HF_HUB_CACHE"] = "cache"
|
| 5 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
| 6 |
import gradio as gr
|
| 7 |
|
| 8 |
+
from huggingface_hub import HfApi
|
|
|
|
| 9 |
from huggingface_hub import whoami
|
| 10 |
from huggingface_hub import ModelCard
|
|
|
|
| 11 |
from huggingface_hub import scan_cache_dir
|
| 12 |
from huggingface_hub import logging
|
| 13 |
|
| 14 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
|
|
|
| 15 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 16 |
|
| 17 |
from textwrap import dedent
|
|
|
|
| 19 |
import mlx_lm
|
| 20 |
from mlx_lm import convert
|
| 21 |
|
|
|
|
|
|
|
| 22 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 23 |
|
| 24 |
def clear_hf_cache_space():
|
|
|
|
| 78 |
)
|
| 79 |
print(f"Upload successful, go to https://huggingface.co/{upload_repo} for details.")
|
| 80 |
|
| 81 |
+
def process_model(model_id, q_method, oauth_token: gr.OAuthToken | None):
|
|
|
|
| 82 |
if oauth_token.token is None:
|
| 83 |
raise ValueError("You must be logged in to use MLX-my-repo")
|
| 84 |
|
|
|
|
| 86 |
print(model_name)
|
| 87 |
username = whoami(oauth_token.token)["name"]
|
| 88 |
print(username)
|
|
|
|
|
|
|
| 89 |
|
| 90 |
try:
|
| 91 |
upload_repo = username + "/" + model_name + "-mlx"
|