File size: 6,416 Bytes
bf22e13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27ef2bf
bf22e13
27ef2bf
bf22e13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import cv2
import numpy as np
import math

class YOLOv8Face:
    def __init__(self, path, conf_thres=0.2, iou_thres=0.5):
        self.conf_threshold = conf_thres
        self.iou_threshold = iou_thres
        self.class_names = ['face']
        self.num_classes = len(self.class_names)
        # Initialize model
        self.net = cv2.dnn.readNet(path)
        self.input_height = 640
        self.input_width = 640
        self.reg_max = 16

        self.project = np.arange(self.reg_max)
        self.strides = (8, 16, 32)
        self.feats_hw = [(math.ceil(self.input_height / self.strides[i]), math.ceil(self.input_width / self.strides[i])) for i in range(len(self.strides))]
        self.anchors = self.make_anchors(self.feats_hw)

    def make_anchors(self, feats_hw, grid_cell_offset=0.5):
        """Generate anchors from features."""
        anchor_points = {}
        for i, stride in enumerate(self.strides):
            h,w = feats_hw[i]
            x = np.arange(0, w) + grid_cell_offset  # shift x
            y = np.arange(0, h) + grid_cell_offset  # shift y
            sx, sy = np.meshgrid(x, y)
            # sy, sx = np.meshgrid(y, x)
            anchor_points[stride] = np.stack((sx, sy), axis=-1).reshape(-1, 2)
        return anchor_points

    def softmax(self, x, axis=1):
        x_exp = np.exp(x)
        x_sum = np.sum(x_exp, axis=axis, keepdims=True)
        s = x_exp / x_sum
        return s
    
    def resize_image(self, srcimg, keep_ratio=True):
        top, left, newh, neww = 0, 0, self.input_width, self.input_height
        if keep_ratio and srcimg.shape[0] != srcimg.shape[1]:
            hw_scale = srcimg.shape[0] / srcimg.shape[1]
            if hw_scale > 1:
                newh, neww = self.input_height, int(self.input_width / hw_scale)
                img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
                left = int((self.input_width - neww) * 0.5)
                img = cv2.copyMakeBorder(img, 0, 0, left, self.input_width - neww - left, cv2.BORDER_CONSTANT,
                                         value=(0, 0, 0))  # add border
            else:
                newh, neww = int(self.input_height * hw_scale), self.input_width
                img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
                top = int((self.input_height - newh) * 0.5)
                img = cv2.copyMakeBorder(img, top, self.input_height - newh - top, 0, 0, cv2.BORDER_CONSTANT,
                                         value=(0, 0, 0))
        else:
            img = cv2.resize(srcimg, (self.input_width, self.input_height), interpolation=cv2.INTER_AREA)
        return img, newh, neww, top, left

    def detect(self, srcimg):
        input_img, newh, neww, padh, padw = self.resize_image(cv2.cvtColor(srcimg, cv2.COLOR_BGR2RGB))
        scale_h, scale_w = srcimg.shape[0]/newh, srcimg.shape[1]/neww
        input_img = input_img.astype(np.float32) / 255.0

        blob = cv2.dnn.blobFromImage(input_img)
        self.net.setInput(blob)
        outputs = self.net.forward(self.net.getUnconnectedOutLayersNames())
        det_bboxes, det_conf, det_classid, landmarks = self.post_process(outputs, scale_h, scale_w, padh, padw)
        return det_bboxes, det_conf, det_classid, landmarks

    def post_process(self, preds, scale_h, scale_w, padh, padw):
        bboxes, scores, landmarks = [], [], []
        for i, pred in enumerate(preds):
            stride = int(self.input_height/pred.shape[2])
            pred = pred.transpose((0, 2, 3, 1))
            
            box = pred[..., :self.reg_max * 4]
            cls = 1 / (1 + np.exp(-pred[..., self.reg_max * 4:-15])).reshape((-1,1))
            kpts = pred[..., -15:].reshape((-1,15)) ### x1,y1,score1, ..., x5,y5,score5

            tmp = box.reshape(-1, 4, self.reg_max)
            bbox_pred = self.softmax(tmp, axis=-1)
            bbox_pred = np.dot(bbox_pred, self.project).reshape((-1,4))

            bbox = self.distance2bbox(self.anchors[stride], bbox_pred, max_shape=(self.input_height, self.input_width)) * stride
            kpts[:, 0::3] = (kpts[:, 0::3] * 2.0 + (self.anchors[stride][:, 0].reshape((-1,1)) - 0.5)) * stride
            kpts[:, 1::3] = (kpts[:, 1::3] * 2.0 + (self.anchors[stride][:, 1].reshape((-1,1)) - 0.5)) * stride
            kpts[:, 2::3] = 1 / (1+np.exp(-kpts[:, 2::3]))

            bbox -= np.array([[padw, padh, padw, padh]])
            bbox *= np.array([[scale_w, scale_h, scale_w, scale_h]])
            kpts -= np.tile(np.array([padw, padh, 0]), 5).reshape((1,15))
            kpts *= np.tile(np.array([scale_w, scale_h, 1]), 5).reshape((1,15))

            bboxes.append(bbox)
            scores.append(cls)
            landmarks.append(kpts)

        bboxes = np.concatenate(bboxes, axis=0)
        scores = np.concatenate(scores, axis=0)
        landmarks = np.concatenate(landmarks, axis=0)
    
        bboxes_wh = bboxes.copy()
        bboxes_wh[:, 2:4] = bboxes[:, 2:4] - bboxes[:, 0:2]  # x y w h
        classIds = np.argmax(scores, axis=1)
        confidences = np.max(scores, axis=1)  # max_class_confidence
        
        mask = confidences>self.conf_threshold
        bboxes_wh = bboxes_wh[mask]
        confidences = confidences[mask]
        classIds = classIds[mask]
        landmarks = landmarks[mask]
        
        indices = cv2.dnn.NMSBoxes(bboxes_wh.tolist(), confidences.tolist(), self.conf_threshold,
                                   self.iou_threshold)
        if len(indices) > 0:
            indices = indices.flatten()
            mlvl_bboxes = bboxes_wh[indices]
            confidences = confidences[indices]
            classIds = classIds[indices]
            landmarks = landmarks[indices]
            return mlvl_bboxes, confidences, classIds, landmarks
        else:
            print('nothing detect')
            return np.array([]), np.array([]), np.array([]), np.array([])

    def distance2bbox(self, points, distance, max_shape=None):
        x1 = points[:, 0] - distance[:, 0]
        y1 = points[:, 1] - distance[:, 1]
        x2 = points[:, 0] + distance[:, 2]
        y2 = points[:, 1] + distance[:, 3]
        if max_shape is not None:
            x1 = np.clip(x1, 0, max_shape[1])
            y1 = np.clip(y1, 0, max_shape[0])
            x2 = np.clip(x2, 0, max_shape[1])
            y2 = np.clip(y2, 0, max_shape[0])
        return np.stack([x1, y1, x2, y2], axis=-1)