Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import torch | |
| import os | |
| import copy | |
| from PIL import Image | |
| import json | |
| import imageio | |
| # import clip | |
| SCANNET_COLOR_MAP_20 = {-1: (0., 0., 0.), 0: (174., 199., 232.), 1: (152., 223., 138.), 2: (31., 119., 180.), 3: (255., 187., 120.), 4: (188., 189., 34.), 5: (140., 86., 75.), | |
| 6: (255., 152., 150.), 7: (214., 39., 40.), 8: (197., 176., 213.), 9: (148., 103., 189.), 10: (196., 156., 148.), 11: (23., 190., 207.), 12: (247., 182., 210.), | |
| 13: (219., 219., 141.), 14: (255., 127., 14.), 15: (158., 218., 229.), 16: (44., 160., 44.), 17: (112., 128., 144.), 18: (227., 119., 194.), 19: (82., 84., 163.)} | |
| class Voxelize(object): | |
| def __init__(self, | |
| voxel_size=0.05, | |
| hash_type="fnv", | |
| mode='train', | |
| keys=("coord", "normal", "color", "label"), | |
| return_discrete_coord=False, | |
| return_min_coord=False): | |
| self.voxel_size = voxel_size | |
| self.hash = self.fnv_hash_vec if hash_type == "fnv" else self.ravel_hash_vec | |
| assert mode in ["train", "test"] | |
| self.mode = mode | |
| self.keys = keys | |
| self.return_discrete_coord = return_discrete_coord | |
| self.return_min_coord = return_min_coord | |
| def __call__(self, data_dict): | |
| assert "coord" in data_dict.keys() | |
| discrete_coord = np.floor(data_dict["coord"] / np.array(self.voxel_size)).astype(np.int) | |
| min_coord = discrete_coord.min(0) * np.array(self.voxel_size) | |
| discrete_coord -= discrete_coord.min(0) | |
| key = self.hash(discrete_coord) | |
| idx_sort = np.argsort(key) | |
| key_sort = key[idx_sort] | |
| _, inverse, count = np.unique(key_sort, return_inverse=True, return_counts=True) | |
| if self.mode == 'train': # train mode | |
| # idx_select = np.cumsum(np.insert(count, 0, 0)[0:-1]) + np.random.randint(0, count.max(), count.size) % count | |
| idx_select = np.cumsum(np.insert(count, 0, 0)[0:-1]) | |
| idx_unique = idx_sort[idx_select] | |
| if self.return_discrete_coord: | |
| data_dict["discrete_coord"] = discrete_coord[idx_unique] | |
| if self.return_min_coord: | |
| data_dict["min_coord"] = min_coord.reshape([1, 3]) | |
| for key in self.keys: | |
| data_dict[key] = data_dict[key][idx_unique] | |
| return data_dict | |
| elif self.mode == 'test': # test mode | |
| data_part_list = [] | |
| for i in range(count.max()): | |
| idx_select = np.cumsum(np.insert(count, 0, 0)[0:-1]) + i % count | |
| idx_part = idx_sort[idx_select] | |
| data_part = dict(index=idx_part) | |
| for key in data_dict.keys(): | |
| if key in self.keys: | |
| data_part[key] = data_dict[key][idx_part] | |
| else: | |
| data_part[key] = data_dict[key] | |
| if self.return_discrete_coord: | |
| data_part["discrete_coord"] = discrete_coord[idx_part] | |
| if self.return_min_coord: | |
| data_part["min_coord"] = min_coord.reshape([1, 3]) | |
| data_part_list.append(data_part) | |
| return data_part_list | |
| else: | |
| raise NotImplementedError | |
| def ravel_hash_vec(arr): | |
| """ | |
| Ravel the coordinates after subtracting the min coordinates. | |
| """ | |
| assert arr.ndim == 2 | |
| arr = arr.copy() | |
| arr -= arr.min(0) | |
| arr = arr.astype(np.uint64, copy=False) | |
| arr_max = arr.max(0).astype(np.uint64) + 1 | |
| keys = np.zeros(arr.shape[0], dtype=np.uint64) | |
| # Fortran style indexing | |
| for j in range(arr.shape[1] - 1): | |
| keys += arr[:, j] | |
| keys *= arr_max[j + 1] | |
| keys += arr[:, -1] | |
| return keys | |
| def fnv_hash_vec(arr): | |
| """ | |
| FNV64-1A | |
| """ | |
| assert arr.ndim == 2 | |
| # Floor first for negative coordinates | |
| arr = arr.copy() | |
| arr = arr.astype(np.uint64, copy=False) | |
| hashed_arr = np.uint64(14695981039346656037) * np.ones(arr.shape[0], dtype=np.uint64) | |
| for j in range(arr.shape[1]): | |
| hashed_arr *= np.uint64(1099511628211) | |
| hashed_arr = np.bitwise_xor(hashed_arr, arr[:, j]) | |
| return hashed_arr | |
| def overlap_percentage(mask1, mask2): | |
| intersection = np.logical_and(mask1, mask2) | |
| area_intersection = np.sum(intersection) | |
| area_mask1 = np.sum(mask1) | |
| area_mask2 = np.sum(mask2) | |
| smaller_area = min(area_mask1, area_mask2) | |
| return area_intersection / smaller_area | |
| def remove_samll_masks(masks, ratio=0.8): | |
| filtered_masks = [] | |
| skip_masks = set() | |
| for i, mask1_dict in enumerate(masks): | |
| if i in skip_masks: | |
| continue | |
| should_keep = True | |
| for j, mask2_dict in enumerate(masks): | |
| if i == j or j in skip_masks: | |
| continue | |
| mask1 = mask1_dict["segmentation"] | |
| mask2 = mask2_dict["segmentation"] | |
| overlap = overlap_percentage(mask1, mask2) | |
| if overlap > ratio: | |
| if np.sum(mask1) < np.sum(mask2): | |
| should_keep = False | |
| break | |
| else: | |
| skip_masks.add(j) | |
| if should_keep: | |
| filtered_masks.append(mask1) | |
| return filtered_masks | |
| def to_numpy(x): | |
| if isinstance(x, torch.Tensor): | |
| x = x.clone().detach().cpu().numpy() | |
| assert isinstance(x, np.ndarray) | |
| return x | |
| def save_point_cloud(coord, color=None, file_path="pc.ply", logger=None): | |
| os.makedirs(os.path.dirname(file_path), exist_ok=True) | |
| coord = to_numpy(coord) | |
| if color is not None: | |
| color = to_numpy(color) | |
| pcd = o3d.geometry.PointCloud() | |
| pcd.points = o3d.utility.Vector3dVector(coord) | |
| pcd.colors = o3d.utility.Vector3dVector(np.ones_like(coord) if color is None else color) | |
| o3d.io.write_point_cloud(file_path, pcd) | |
| if logger is not None: | |
| logger.info(f"Save Point Cloud to: {file_path}") | |
| def remove_small_group(group_ids, th): | |
| unique_elements, counts = np.unique(group_ids, return_counts=True) | |
| result = group_ids.copy() | |
| for i, count in enumerate(counts): | |
| if count < th: | |
| result[group_ids == unique_elements[i]] = -1 | |
| return result | |
| def pairwise_indices(length): | |
| return [[i, i + 1] if i + 1 < length else [i] for i in range(0, length, 2)] | |
| def num_to_natural(group_ids): | |
| ''' | |
| Change the group number to natural number arrangement | |
| ''' | |
| if np.all(group_ids == -1): | |
| return group_ids | |
| array = copy.deepcopy(group_ids) | |
| unique_values = np.unique(array[array != -1]) | |
| mapping = np.full(np.max(unique_values) + 2, -1) | |
| mapping[unique_values + 1] = np.arange(len(unique_values)) | |
| array = mapping[array + 1] | |
| return array | |
| def get_matching_indices(source, pcd_tree, search_voxel_size, K=None): | |
| match_inds = [] | |
| for i, point in enumerate(source.points): | |
| [_, idx, _] = pcd_tree.search_radius_vector_3d(point, search_voxel_size) | |
| if K is not None: | |
| idx = idx[:K] | |
| for j in idx: | |
| # match_inds[i, j] = 1 | |
| match_inds.append((i, j)) | |
| return match_inds | |
| def visualize_3d(data_dict, text_feat_path, save_path): | |
| text_feat = torch.load(text_feat_path) | |
| group_logits = np.einsum('nc,mc->nm', data_dict["group_feat"], text_feat) | |
| group_labels = np.argmax(group_logits, axis=-1) | |
| labels = group_labels[data_dict["group"]] | |
| labels[data_dict["group"] == -1] = -1 | |
| visualize_pcd(data_dict["coord"], data_dict["color"], labels, save_path) | |
| def visualize_pcd(coord, pcd_color, labels, save_path): | |
| # alpha = 0.5 | |
| label_color = np.array([SCANNET_COLOR_MAP_20[label] for label in labels]) | |
| # overlay = (pcd_color * (1-alpha) + label_color * alpha).astype(np.uint8) / 255 | |
| label_color = label_color / 255 | |
| save_point_cloud(coord, label_color, save_path) | |
| def visualize_2d(img_color, labels, img_size, save_path): | |
| import matplotlib.pyplot as plt | |
| # from skimage.segmentation import mark_boundaries | |
| # from skimage.color import label2rgb | |
| label_names = ["wall", "floor", "cabinet", "bed", "chair", | |
| "sofa", "table", "door", "window", "bookshelf", | |
| "picture", "counter", "desk", "curtain", "refridgerator", | |
| "shower curtain", "toilet", "sink", "bathtub", "other"] | |
| colors = np.array(list(SCANNET_COLOR_MAP_20.values()))[1:] | |
| segmentation_color = np.zeros((img_size[0], img_size[1], 3)) | |
| for i, color in enumerate(colors): | |
| segmentation_color[labels == i] = color | |
| alpha = 1 | |
| overlay = (img_color * (1-alpha) + segmentation_color * alpha).astype(np.uint8) | |
| fig, ax = plt.subplots() | |
| ax.imshow(overlay) | |
| patches = [plt.plot([], [], 's', color=np.array(color)/255, label=label)[0] for label, color in zip(label_names, colors)] | |
| plt.legend(handles=patches, bbox_to_anchor=(0.5, -0.1), loc='upper center', ncol=4, fontsize='small') | |
| plt.savefig(save_path, bbox_inches='tight') | |
| plt.show() | |
| def visualize_partition(coord, group_id, save_path): | |
| group_id = group_id.reshape(-1) | |
| num_groups = group_id.max() + 1 | |
| group_colors = np.random.rand(num_groups, 3) | |
| group_colors = np.vstack((group_colors, np.array([0,0,0]))) | |
| color = group_colors[group_id] | |
| save_point_cloud(coord, color, save_path) | |
| def delete_invalid_group(group, group_feat): | |
| indices = np.unique(group[group != -1]) | |
| group = num_to_natural(group) | |
| group_feat = group_feat[indices] | |
| return group, group_feat | |
| def group_sem_voting(semantic_label, seg_result, instance_num=0): | |
| if instance_num == 0: | |
| instance_num = seg_result.max() + 1 | |
| seg_labels = [] | |
| sem_map = -1 * torch.ones_like(semantic_label) | |
| for n in range(instance_num): | |
| mask = (seg_result == n) | |
| if mask.sum() == 0: | |
| sem_map[mask] = -1 | |
| seg_labels.append(-1) | |
| continue | |
| seg_label_n_cover, seg_label_n_nums = torch.unique(semantic_label[mask], return_counts=True) | |
| seg_label_n = seg_label_n_cover[seg_label_n_nums.max(-1)[1]] | |
| seg_labels.append(seg_label_n) | |
| sem_map[mask] = seg_label_n | |
| return sem_map | |
| def two_image_to_gif(image_1, image_2, name): | |
| num_begin = 30 | |
| num_frames = 30 | |
| num_end = 30 | |
| frames = [] | |
| for i in range(num_begin): | |
| frames.append(image_1) | |
| for i in range(num_frames): | |
| image_tmp = image_1 + (image_2 - image_1) * (i / (num_frames - 1)) | |
| frames.append(image_tmp.astype(np.uint8)) | |
| for i in range(num_end): | |
| frames.append(image_2) | |
| # video_out_file = '{}.gif'.format(name) | |
| # imageio.mimwrite(os.path.join('outputs', video_out_file), frames, fps=25) | |
| video_out_file = '{}.mp4'.format(name) | |
| imageio.mimwrite(os.path.join('outputs', video_out_file), frames, fps=25, quality=8) |