File size: 7,612 Bytes
4a17bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import pandas as pd
import requests
import json
import re
from typing import Optional, List


def parse_hbsag_duration(hbsag_value: str) -> int:
    """Extract duration in months from HBsAg status string."""
    if pd.isna(hbsag_value):
        return 6  # Default to 6 months if not specified
    
    # Extract number and unit from strings like "Positive (36 months)" or "Positive (10 years)"
    match = re.search(r'\((\d+)\s*(months?|years?)\)', str(hbsag_value))
    if match:
        value = int(match.group(1))
        unit = match.group(2).lower()
        return value * 12 if 'year' in unit else value
    
    # If just "Positive" with no duration, default to 6 months
    return 6


def parse_status(value: str) -> str:
    """Parse status values to 'Positive' or 'Negative' (exact capitalization required)."""
    if pd.isna(value):
        return "Negative"
    val_lower = str(value).lower()
    if 'positive' in val_lower:
        return "Positive"
    elif 'negative' in val_lower:
        return "Negative"
    return "Negative"


def parse_sex(value: str) -> str:
    """Parse sex to 'Male' or 'Female' (exact capitalization required)."""
    if pd.isna(value):
        return "Male"
    val_lower = str(value).lower()
    if val_lower in ['m', 'male']:
        return "Male"
    elif val_lower in ['f', 'female']:
        return "Female"
    return "Male"


def parse_pregnancy_status(sex: str, value: str) -> str:
    """Parse pregnancy status to 'Not pregnant' or 'Pregnant' (exact capitalization required)."""
    if sex == "Male":
        return "Not pregnant"
    if pd.isna(value):
        return "Not pregnant"
    val_lower = str(value).lower()
    if 'yes' in val_lower or 'pregnant' in val_lower:
        return "Pregnant"
    return "Not pregnant"


def parse_boolean(value: str) -> bool:
    """Parse Yes/No values to boolean."""
    if pd.isna(value):
        return False
    val_lower = str(value).lower()
    return 'yes' in val_lower


def parse_fibrosis_stage(value: str) -> str:
    """Extract fibrosis stage - must be 'F0-F1', 'F2-F3', or 'F4'."""
    if pd.isna(value) or value == "N/A":
        return "F0-F1"
    
    val_str = str(value).upper()
    
    # Map specific values
    if 'F4' in val_str or 'CIRRHOSIS' in val_str.upper():
        return "F4"
    elif 'F3' in val_str or 'F2' in val_str:
        return "F2-F3"
    elif 'F1' in val_str or 'F0' in val_str:
        return "F0-F1"
    
    return "F0-F1"


def parse_necroinflammation(value: str) -> str:
    """Parse necroinflammation activity - must be 'A0', 'A1', 'A2', or 'A3'."""
    if pd.isna(value) or str(value).lower() == "none":
        return "A0"
    
    val_str = str(value).upper()
    
    # Map specific values
    if 'A3' in val_str or 'SEVERE' in val_str:
        return "A3"
    elif 'A2' in val_str or 'MODERATE' in val_str:
        return "A2"
    elif 'A1' in val_str or 'MILD' in val_str:
        return "A1"
    elif 'A0' in val_str or 'MINIMAL' in val_str:
        return "A0"
    
    return "A1"


def parse_immunosuppression(value: str) -> str:
    """Parse immunosuppression therapy status - must be 'None', 'Chemotherapy', or 'Other'."""
    if pd.isna(value) or str(value).lower() == "none":
        return "None"
    
    val_lower = str(value).lower()
    if 'chemo' in val_lower:
        return "Chemotherapy"
    elif 'none' in val_lower:
        return "None"
    else:
        return "Other"


def parse_coinfections(value: str) -> List[str]:
    """Parse coinfections - must be from list: HIV, HCV, HDV."""
    if pd.isna(value) or str(value).lower() == "none":
        return []
    
    coinfections = []
    val_upper = str(value).upper()
    
    if 'HCV' in val_upper:
        coinfections.append("HCV")
    if 'HIV' in val_upper:
        coinfections.append("HIV")
    if 'HDV' in val_upper:
        coinfections.append("HDV")
    
    return coinfections


def parse_comorbidities(value: str) -> Optional[List[str]]:
    """Parse other comorbidities."""
    if pd.isna(value) or str(value).lower() == "none":
        return None
    return [str(value)]


def create_api_payload(row: pd.Series) -> dict:
    """Create API request payload from CSV row."""
    sex = parse_sex(row['Sex'])
    
    return {
        "sex": sex,
        "age": int(row['Age']),
        "pregnancy_status": parse_pregnancy_status(sex, row['Pregnancy Status']),
        "hbsag_status": parse_status(row['HBsAg']),
        "duration_hbsag_months": parse_hbsag_duration(row['HBsAg']),
        "hbv_dna_level": float(row['HBV DNA (IU/mL)']),
        "hbeag_status": parse_status(row['HBeAg']),
        "alt_level": float(row['ALT (U/L)']),
        "fibrosis_stage": parse_fibrosis_stage(row['Fibrosis/Cirrhosis Stage']),
        "necroinflammatory_activity": parse_necroinflammation(row['Necroinflammation']),
        "extrahepatic_manifestations": parse_boolean(row['Extrahepatic Manifestations']),
        "immunosuppression_status": parse_immunosuppression(row['Immunosuppressive Therapy']),
        "coinfections": parse_coinfections(row['Coinfections']),
        "family_history_cirrhosis_hcc": parse_boolean(row['Family History of HCC/Cirrhosis']),
        "other_comorbidities": parse_comorbidities(row['Comorbidities'])
    }


def assess_case(payload: dict, api_url: str) -> dict:
    """Call the API to assess eligibility."""
    try:
        response = requests.post(
            api_url,
            json=payload,
            headers={'Content-Type': 'application/json'},
            timeout=30
        )
        response.raise_for_status()
        return response.json()
    except requests.exceptions.HTTPError as e:
        # Try to get detailed error message
        try:
            error_detail = response.json()
            print(f"API Error Details: {json.dumps(error_detail, indent=2)}")
        except:
            print(f"API Error: {e}")
        return {"eligible": None, "recommendations": f"Error: {str(e)}"}
    except requests.exceptions.RequestException as e:
        print(f"API Error: {e}")
        return {"eligible": None, "recommendations": f"Error: {str(e)}"}


def main():
    # Configuration
    input_file = r"D:\Work\HBV AI Assistant\data\HBV_Eligibility_TestCases - To Be Tested(Sheet1).csv"
    output_file = "HBV_Eligibility_Results.csv"
    api_url = "https://moazx-hbv-ai-assistant.hf.space/assess"
    
    # Read CSV
    print(f"Reading {input_file}...")
    df = pd.read_csv(input_file, encoding='windows-1252')
    
    # Add columns for results
    df['Eligibility'] = None
    df['Rationale'] = None
    
    # Process each case
    print(f"\nProcessing {len(df)} cases...")
    for idx, row in df.iterrows():
        case_id = row['Case ID']
        print(f"\nProcessing {case_id}...")
        
        # Create payload
        payload = create_api_payload(row)
        print(f"Payload: {json.dumps(payload, indent=2)}")
        
        # Call API
        result = assess_case(payload, api_url)
        print(f"Result: {result}")
        
        # Update dataframe
        df.at[idx, 'Eligibility'] = result.get('eligible')
        df.at[idx, 'Rationale'] = result.get('recommendations', '')
    
    # Save results
    print(f"\nSaving results to {output_file}...")
    df.to_csv(output_file, index=False)
    print("Done!")
    
    # Print summary
    eligible_count = df['Eligibility'].sum() if df['Eligibility'].notna().any() else 0
    print(f"\nSummary:")
    print(f"Total cases: {len(df)}")
    print(f"Eligible: {eligible_count}")
    print(f"Not eligible: {len(df) - eligible_count}")


if __name__ == "__main__":
    main()