Spaces:
Running
Running
File size: 12,918 Bytes
73c6377 4a17bbc 73c6377 4a17bbc 73c6377 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
import pickle
import logging
import os
import shutil
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor, as_completed
from pathlib import Path
from typing import List, Optional, Iterable
from langchain.schema import Document
from langchain_community.vectorstores import FAISS
from .config import get_embedding_model, VECTOR_STORE_DIR, CHUNKS_PATH, NEW_DATA, PROCESSED_DATA, settings
from .text_processors import markdown_splitter, recursive_splitter
from . import data_loaders
logger = logging.getLogger(__name__)
MAX_WORKERS = max(2, min(8, (os.cpu_count() or 4)))
def load_vector_store() -> Optional[FAISS]:
"""Load existing vector store with proper error handling.
Only attempt to load if required FAISS files are present.
"""
try:
store_dir = Path(VECTOR_STORE_DIR)
index_file = store_dir / "index.faiss"
meta_file = store_dir / "index.pkl" # created by LangChain FAISS.save_local
# If directory exists but files are missing, do not attempt load
if not (index_file.exists() and meta_file.exists()):
logger.info("Vector store not initialized yet; index files not found. Skipping load.")
return None
vector_store = FAISS.load_local(
str(VECTOR_STORE_DIR),
get_embedding_model(),
allow_dangerous_deserialization=True,
)
logger.info("Successfully loaded existing vector store")
return vector_store
except Exception as e:
logger.error(f"Failed to load vector store: {e}")
return None
def load_chunks() -> Optional[List[Document]]:
"""Load pre-processed document chunks from cache with error handling."""
try:
if Path(CHUNKS_PATH).exists():
with open(CHUNKS_PATH, 'rb') as f:
chunks = pickle.load(f)
logger.info(f"Successfully loaded {len(chunks)} chunks from cache")
return chunks
else:
logger.info("No cached chunks found")
return None
except Exception as e:
logger.error(f"Failed to load chunks: {e}")
return None
def save_chunks(chunks: List[Document]) -> bool:
"""Save processed document chunks to cache file.
Args:
chunks: List of document chunks to save
Returns:
True if successful, False otherwise
"""
try:
# Ensure directory exists
Path(CHUNKS_PATH).parent.mkdir(parents=True, exist_ok=True)
with open(CHUNKS_PATH, 'wb') as f:
pickle.dump(chunks, f)
logger.info(f"Successfully saved {len(chunks)} chunks to {CHUNKS_PATH}")
return True
except Exception as e:
logger.error(f"Failed to save chunks: {e}")
return False
# ============================================================================
# DOCUMENT PROCESSING UTILITIES
# ============================================================================
def _iter_files(root: Path) -> Iterable[Path]:
"""Yield PDF and Markdown files under the given root directory recursively.
Args:
root: Root directory to search
Yields:
Path objects for PDF and Markdown files
"""
if not root.exists():
return []
for p in root.rglob('*'):
if p.is_file() and p.suffix.lower() in {'.pdf', '.md'}:
yield p
def create_documents() -> List[Document]:
"""Load documents from NEW_DATA directory.
Returns:
List of loaded documents
Note:
Use create_documents_and_files() if you need both documents and file paths.
"""
docs, _ = create_documents_and_files()
return docs
def _load_documents_for_file(file_path: Path) -> List[Document]:
"""Load documents from a single file (PDF or Markdown).
Args:
file_path: Path to the file to load
Returns:
List of documents loaded from the file
"""
try:
if file_path.suffix.lower() == '.pdf':
# Use advanced LlamaParse loader with settings from config
api_key = settings.LLAMA_CLOUD_API_KEY
premium_mode = settings.LLAMA_PREMIUM_MODE
return data_loaders.load_pdf_documents_advanced(
file_path,
api_key=api_key,
premium_mode=premium_mode
)
return data_loaders.load_markdown_documents(file_path)
except Exception as e:
logger.error(f"Failed to load {file_path}: {e}")
return []
def create_documents_and_files() -> tuple[List[Document], List[Path]]:
"""Load documents from NEW_DATA directory and return both documents and file paths.
Returns:
Tuple of (documents, file_paths) where:
- documents: List of loaded Document objects
- file_paths: List of Path objects for files that were loaded
"""
documents: List[Document] = []
files = list(_iter_files(NEW_DATA))
if not files:
logger.info(f"No new files found under {NEW_DATA}")
return documents, []
worker_count = min(MAX_WORKERS, len(files)) or 1
with ThreadPoolExecutor(max_workers=worker_count) as executor:
futures = {executor.submit(_load_documents_for_file, file_path): file_path for file_path in files}
for future in as_completed(futures):
documents.extend(future.result())
logger.info(f"Loaded {len(documents)} documents from {NEW_DATA}")
return documents, files
def _segment_document(doc: Document) -> List[Document]:
"""Segment a document using markdown headers if applicable.
Args:
doc: Document to segment
Returns:
List of segmented documents (or original if not markdown)
"""
source_name = str(doc.metadata.get("source", "")).lower()
if source_name.endswith('.md'):
try:
md_sections = markdown_splitter.split_text(doc.page_content)
return [Document(page_content=section.page_content, metadata={**doc.metadata, **section.metadata}) for section in md_sections]
except Exception:
return [doc]
return [doc]
def _split_chunk(doc: Document) -> List[Document]:
"""Split a document into smaller chunks using recursive splitter.
Args:
doc: Document to split
Returns:
List of document chunks
"""
try:
return recursive_splitter.split_documents([doc])
except Exception as exc:
logger.error(f"Failed to split document {doc.metadata.get('source', 'unknown')}: {exc}")
return []
def split_documents(documents: List[Document]) -> List[Document]:
"""Split documents into smaller chunks for vector store indexing.
Process:
1. Segment markdown files by headers (if applicable)
2. Split all documents into uniform chunks using recursive splitter
Args:
documents: List of documents to split
Returns:
List of document chunks ready for indexing
"""
if not documents:
return []
# First pass: optional markdown header segmentation for .md sources
worker_count = min(MAX_WORKERS, len(documents)) or 1
with ThreadPoolExecutor(max_workers=worker_count) as executor:
segmented_lists = list(executor.map(_segment_document, documents))
segmented: List[Document] = [seg for sublist in segmented_lists for seg in sublist]
if not segmented:
return []
# Second pass: split into uniform chunks
split_worker_count = min(MAX_WORKERS, len(segmented)) or 1
with ThreadPoolExecutor(max_workers=split_worker_count) as executor:
chunk_lists = list(executor.map(_split_chunk, segmented))
chunks = [chunk for chunk_list in chunk_lists for chunk in chunk_list]
logger.info(f"Split {len(segmented)} documents into {len(chunks)} chunks")
return chunks
def create_vector_store(chunks: List[Document]) -> FAISS:
"""Create a new FAISS vector store from document chunks and persist it.
Args:
chunks: List of document chunks to index
Returns:
Created FAISS vector store
Raises:
ValueError: If chunks list is empty
"""
if not chunks:
raise ValueError("Cannot create vector store from empty chunks")
vector_store = FAISS.from_documents(chunks, get_embedding_model())
vector_store.save_local(str(VECTOR_STORE_DIR))
logger.info("Vector store created and saved")
return vector_store
def update_vector_store_with_chunks(chunks: List[Document]) -> FAISS:
"""Update vector store with new chunks or create if doesn't exist.
Args:
chunks: List of new document chunks to add
Returns:
Updated or newly created FAISS vector store
"""
if not chunks:
existing = load_vector_store()
if existing:
return existing
store = load_vector_store()
if store is None:
store = create_vector_store(chunks)
else:
# Add to existing store and persist
store.add_documents(chunks)
store.save_local(str(VECTOR_STORE_DIR))
logger.info(f"Added {len(chunks)} new chunks to existing vector store")
return store
def _move_to_processed(paths: List[Path]) -> None:
"""Move processed files to processed_data folder maintaining directory structure.
Args:
paths: List of file paths to move
"""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
for p in paths:
try:
if p.exists() and p.is_file():
# Calculate relative path from NEW_DATA
try:
rel_path = p.relative_to(NEW_DATA)
except ValueError:
# File is not under NEW_DATA, skip it
logger.warning(f"File {p} is not under NEW_DATA directory, skipping")
continue
# Create destination path in PROCESSED_DATA with same structure
dest_dir = PROCESSED_DATA / rel_path.parent
dest_dir.mkdir(parents=True, exist_ok=True)
# Add timestamp to filename to avoid overwriting
dest_file = dest_dir / f"{p.stem}_{timestamp}{p.suffix}"
# Move the file
shutil.move(str(p), str(dest_file))
logger.info(f"📦 Moved processed file: {p.name} -> {dest_file.relative_to(PROCESSED_DATA)}")
except Exception as e:
logger.error(f"❌ Failed to move {p}: {e}")
def _cleanup_empty_dirs(root: Path) -> None:
"""Remove empty directories under root directory (best-effort).
Args:
root: Root directory to clean up
"""
try:
# Walk bottom-up to remove empty directories
dirs = [d for d in root.rglob('*') if d.is_dir()]
for dirpath in sorted(dirs, key=lambda x: len(str(x)), reverse=True):
try:
if not any(dirpath.iterdir()):
dirpath.rmdir()
logger.info(f"Removed empty directory: {dirpath}")
except Exception:
pass
except Exception:
pass
def process_new_data_and_update_vector_store() -> Optional[FAISS]:
"""Process new documents and update the vector store.
Workflow:
1. Load documents from NEW_DATA directory
2. Split documents into chunks
3. Update chunks cache and vector store
4. Delete processed files and clean up empty directories
Returns:
Updated FAISS vector store, or None if processing failed
"""
try:
docs, files = create_documents_and_files()
if not docs:
logger.info("No new documents to process.")
return load_vector_store()
chunks = split_documents(docs)
# Save/merge chunks first (durability)
existing_chunks = load_chunks() or []
merged_chunks = existing_chunks + chunks
with ThreadPoolExecutor(max_workers=2) as executor:
save_future = executor.submit(save_chunks, merged_chunks)
store_future = executor.submit(update_vector_store_with_chunks, chunks)
save_success = save_future.result()
store = store_future.result()
if not save_success:
logger.warning("Chunk persistence reported failure; vector store was updated but cache may be stale.")
# If we reached here, store update succeeded; move processed source files
_move_to_processed(files)
_cleanup_empty_dirs(NEW_DATA)
logger.info(
f"✅ Processed {len(docs)} new documents into {len(chunks)} chunks, updated vector store, and moved files to processed_data."
)
return store
except Exception as e:
logger.error(f"Failed processing new data: {e}")
return None |