monology commited on
Commit
71cd4f4
·
1 Parent(s): 3c5afc0
Files changed (1) hide show
  1. app.py +7 -16
app.py CHANGED
@@ -1,24 +1,15 @@
1
- from transformers import EfficientNetImageProcessor, EfficientNetForImageClassification
2
  from PIL import Image
3
- import torch
4
- import torch.nn.functional as F
5
 
6
- device = torch.device("cpu")
7
-
8
-
9
- processor = EfficientNetImageProcessor.from_pretrained("models/dennisjooo/Birds-Classifier-EfficientNetB2")
10
- model = EfficientNetForImageClassification.from_pretrained("models/dennisjooo/Birds-Classifier-EfficientNetB2").to(device)
11
 
 
 
12
 
13
  def predict(image):
14
- inputs = processor(images=image, return_tensors="pt").to(device)
15
- outputs = model(**inputs)
16
- logits = outputs.logits
17
- predicted_class_prob = F.softmax(logits, dim=-1).detach().cpu().numpy().max()
18
- predicted_class_idx = logits.argmax(-1).item()
19
- label = model.config.id2label[predicted_class_idx].split(",")[0]
20
- return {label: float(predicted_class_prob)}
21
-
22
 
23
  import gradio as gr
24
 
 
1
+ from transformers import pipeline
2
  from PIL import Image
 
 
3
 
4
+ #device = torch.device("cpu")
 
 
 
 
5
 
6
+ #processor = EfficientNetImageProcessor.from_pretrained("models/dennisjooo/Birds-Classifier-EfficientNetB2")
7
+ #model = EfficientNetForImageClassification.from_pretrained("models/dennisjooo/Birds-Classifier-EfficientNetB2").to(device)
8
 
9
  def predict(image):
10
+ pipe = pipeline("image-classification", model="models/dennisjooo/Birds-Classifier-EfficientNetB2")
11
+ predictions = pipe(img)
12
+ return {p["label"]: p["score"] for p in predictions}
 
 
 
 
 
13
 
14
  import gradio as gr
15