Spaces:
Runtime error
Runtime error
initial commit
Browse files- Dockerfile +11 -0
- app.py +79 -0
- requirements.txt +2 -0
Dockerfile
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.11
|
| 2 |
+
RUN useradd -m -u 1000 user
|
| 3 |
+
USER user
|
| 4 |
+
ENV HOME=/home/user \
|
| 5 |
+
PATH=/home/user/.local/bin:$PATH
|
| 6 |
+
WORKDIR $HOME/app
|
| 7 |
+
COPY --chown=user . $HOME/app
|
| 8 |
+
COPY ./requirements.txt ~/app/requirements.txt
|
| 9 |
+
RUN pip install -r requirements.txt
|
| 10 |
+
COPY . .
|
| 11 |
+
CMD ["chainlit", "run", "app.py", "--port", "7860"]
|
app.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import chainlit as cl
|
| 2 |
+
from llama_index.llms import MonsterLLM
|
| 3 |
+
from llama_index import VectorStoreIndex,SimpleDirectoryReader, ServiceContext
|
| 4 |
+
|
| 5 |
+
def indexing(llm,path):
|
| 6 |
+
documents = SimpleDirectoryReader(input_files=[path]).load_data()
|
| 7 |
+
print("loading done")
|
| 8 |
+
service_context = ServiceContext.from_defaults(
|
| 9 |
+
chunk_size=1024, llm=llm, embed_model="local:BAAI/bge-small-en-v1.5"
|
| 10 |
+
)
|
| 11 |
+
print("indexing")
|
| 12 |
+
index = VectorStoreIndex.from_documents(documents, service_context=service_context, use_async=True)
|
| 13 |
+
query_engine = index.as_query_engine()
|
| 14 |
+
print("all done")
|
| 15 |
+
print(query_engine)
|
| 16 |
+
return query_engine
|
| 17 |
+
|
| 18 |
+
def qa(sp,engine,message):
|
| 19 |
+
message=message.content
|
| 20 |
+
ques=sp+" "+message
|
| 21 |
+
response=engine.query(ques)
|
| 22 |
+
return response
|
| 23 |
+
|
| 24 |
+
@cl.on_chat_start
|
| 25 |
+
async def factory():
|
| 26 |
+
url = await cl.AskUserMessage(author="Beast",content="Enter url").send()
|
| 27 |
+
print(url)
|
| 28 |
+
if url['output'][-1]=="/":
|
| 29 |
+
url['output']=url['output'].replace(".ai/",".ai")
|
| 30 |
+
auth = await cl.AskUserMessage(author="Beast",content="Enter auth token").send()
|
| 31 |
+
print(auth)
|
| 32 |
+
model = 'deploy-llm'
|
| 33 |
+
llm = MonsterLLM(model=model,base_url=url['output'],monster_api_key=auth['output'],temperature=0.75, context_window=1024)
|
| 34 |
+
files = None
|
| 35 |
+
while files is None:
|
| 36 |
+
files = await cl.AskFileMessage(author="Beast",
|
| 37 |
+
content="Please upload a PDF file to begin!",
|
| 38 |
+
accept=["application/pdf"],
|
| 39 |
+
max_size_mb=20,
|
| 40 |
+
timeout=180,
|
| 41 |
+
).send()
|
| 42 |
+
|
| 43 |
+
pdf = files[0]
|
| 44 |
+
print(pdf)
|
| 45 |
+
msg = cl.Message(author="Beast",content=f"Processing `{pdf.name}`...")
|
| 46 |
+
await msg.send()
|
| 47 |
+
query_engine = await cl.make_async(indexing)(llm,pdf.path)
|
| 48 |
+
msg.content = f"`{pdf.name}` processed."
|
| 49 |
+
await msg.update()
|
| 50 |
+
res = await cl.AskActionMessage(author="Beast",
|
| 51 |
+
content="Do you want to enter system prompt?",
|
| 52 |
+
actions=[
|
| 53 |
+
cl.Action(name="yes", value="yes", label="✅ Yes"),
|
| 54 |
+
cl.Action(name="no", value="no", label="❌ No"),
|
| 55 |
+
],
|
| 56 |
+
).send()
|
| 57 |
+
|
| 58 |
+
if res and res.get("value") == "yes":
|
| 59 |
+
sp = await cl.AskUserMessage(author="Beast",content="Enter system prompt").send()
|
| 60 |
+
await cl.Message(author="Beast",content="Noted. Go ahead as your questions!!").send()
|
| 61 |
+
cl.user_session.set("sp", sp["output"])
|
| 62 |
+
else:
|
| 63 |
+
await cl.Message(author="Beast",content="Okay, then you can start asking your questions!!").send()
|
| 64 |
+
cl.user_session.set("engine", query_engine)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
@cl.on_message
|
| 68 |
+
async def main(message: cl.Message):
|
| 69 |
+
msg = cl.Message(author="Beast",content=f"Processing...", disable_feedback=False)
|
| 70 |
+
await msg.send()
|
| 71 |
+
engine = cl.user_session.get("engine")
|
| 72 |
+
sp=cl.user_session.get("sp")
|
| 73 |
+
if sp==None:
|
| 74 |
+
sp=""
|
| 75 |
+
response =await cl.make_async(qa)(sp,engine,message)
|
| 76 |
+
print(response)
|
| 77 |
+
msg.content = str(response)
|
| 78 |
+
await msg.update()
|
| 79 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
monsterapi
|
| 2 |
+
git+https://github.com/Vikasqblocks/llama_index.git@f2f04654e9f2cbf1bf765b0d575a6af1f899b18e
|