Spaces:
Sleeping
Sleeping
Add application file
Browse files- app.py +333 -0
- requirements.txt +13 -0
app.py
ADDED
|
@@ -0,0 +1,333 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import mimetypes
|
| 4 |
+
import requests
|
| 5 |
+
import time
|
| 6 |
+
from yt_dlp import YoutubeDL
|
| 7 |
+
from reportlab.lib.pagesizes import letter
|
| 8 |
+
from reportlab.lib.styles import getSampleStyleSheet
|
| 9 |
+
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
|
| 10 |
+
from reportlab.lib.units import inch
|
| 11 |
+
import gradio as gr
|
| 12 |
+
|
| 13 |
+
from langchain_community.document_loaders import PyPDFLoader
|
| 14 |
+
from langchain_openai import ChatOpenAI
|
| 15 |
+
from openai import OpenAI, DefaultHttpxClient
|
| 16 |
+
from langchain_chroma import Chroma
|
| 17 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 18 |
+
from langchain_openai import OpenAIEmbeddings
|
| 19 |
+
from langchain_community.document_loaders import WebBaseLoader
|
| 20 |
+
from langchain_core.runnables import RunnableLambda
|
| 21 |
+
from langchain_core.runnables.passthrough import RunnableAssign
|
| 22 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 23 |
+
from langchain_core.output_parsers import StrOutputParser
|
| 24 |
+
from langchain.output_parsers import PydanticOutputParser
|
| 25 |
+
from langchain_core.pydantic_v1 import BaseModel, Field
|
| 26 |
+
from typing import List
|
| 27 |
+
from pprint import pprint
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def download_youtube_video(youtube_url, download_path):
|
| 31 |
+
try:
|
| 32 |
+
ydl_opts = {
|
| 33 |
+
'format': 'bestaudio/best',
|
| 34 |
+
'outtmpl': os.path.join(download_path, '%(title)s.%(ext)s'),
|
| 35 |
+
'postprocessors': [{
|
| 36 |
+
'key': 'FFmpegExtractAudio',
|
| 37 |
+
'preferredcodec': 'mp3',
|
| 38 |
+
'preferredquality': '192',
|
| 39 |
+
}],
|
| 40 |
+
}
|
| 41 |
+
with YoutubeDL(ydl_opts) as ydl:
|
| 42 |
+
info_dict = ydl.extract_info(youtube_url, download=True)
|
| 43 |
+
title = info_dict.get('title', None)
|
| 44 |
+
filename = ydl.prepare_filename(info_dict).replace('.webm', '.mp3').replace('.m4a', '.mp3')
|
| 45 |
+
return filename, title
|
| 46 |
+
except Exception as e:
|
| 47 |
+
print(f"Failed to download video from {youtube_url}: {e}")
|
| 48 |
+
return None, None
|
| 49 |
+
|
| 50 |
+
def upload_file(filepath, api_key):
|
| 51 |
+
url = "https://api.monsterapi.ai/v1/upload"
|
| 52 |
+
headers = {
|
| 53 |
+
"accept": "application/json",
|
| 54 |
+
"authorization": f"Bearer {api_key}"
|
| 55 |
+
}
|
| 56 |
+
|
| 57 |
+
file_name = os.path.basename(filepath)
|
| 58 |
+
get_file_urls = requests.get(f"{url}?filename={file_name}", headers=headers)
|
| 59 |
+
|
| 60 |
+
if get_file_urls.status_code != 200:
|
| 61 |
+
print(f"Failed to get upload URL: {get_file_urls.status_code}")
|
| 62 |
+
return None
|
| 63 |
+
|
| 64 |
+
response_json = get_file_urls.json()
|
| 65 |
+
upload_url = response_json['upload_url']
|
| 66 |
+
download_url = response_json['download_url']
|
| 67 |
+
|
| 68 |
+
data = open(filepath, 'rb').read()
|
| 69 |
+
file_headers = {
|
| 70 |
+
"Content-Type": mimetypes.guess_type(filepath)[0],
|
| 71 |
+
}
|
| 72 |
+
|
| 73 |
+
file_uploaded = requests.put(upload_url, data=data, headers=file_headers)
|
| 74 |
+
|
| 75 |
+
if file_uploaded.status_code == 200:
|
| 76 |
+
print(f"File successfully uploaded. Usable link is {download_url}")
|
| 77 |
+
return download_url
|
| 78 |
+
else:
|
| 79 |
+
print(f"Failed to upload file: {file_uploaded.status_code}")
|
| 80 |
+
return None
|
| 81 |
+
|
| 82 |
+
def generate_process_id(download_url, api_key):
|
| 83 |
+
whisper_url = "https://api.monsterapi.ai/v1/generate/whisper"
|
| 84 |
+
payload = {
|
| 85 |
+
"file": f"{download_url}",
|
| 86 |
+
"language": "en"
|
| 87 |
+
}
|
| 88 |
+
headers = {
|
| 89 |
+
"accept": "application/json",
|
| 90 |
+
"content-type": "application/json",
|
| 91 |
+
"authorization": f"Bearer {api_key}"
|
| 92 |
+
}
|
| 93 |
+
|
| 94 |
+
response = requests.post(whisper_url, json=payload, headers=headers)
|
| 95 |
+
|
| 96 |
+
if response.status_code != 200:
|
| 97 |
+
print(f"Failed to generate process ID: {response.status_code}")
|
| 98 |
+
return None
|
| 99 |
+
else:
|
| 100 |
+
process_id = response.json().get("process_id")
|
| 101 |
+
print(f"Process ID is: {process_id}")
|
| 102 |
+
return process_id
|
| 103 |
+
|
| 104 |
+
def query_job_status(job_id, api_key):
|
| 105 |
+
transcript = ""
|
| 106 |
+
url = f"https://api.monsterapi.ai/v1/status/{job_id}"
|
| 107 |
+
headers = {
|
| 108 |
+
"accept": "application/json",
|
| 109 |
+
"authorization": f"Bearer {api_key}"
|
| 110 |
+
}
|
| 111 |
+
|
| 112 |
+
while True:
|
| 113 |
+
response = requests.get(url, headers=headers)
|
| 114 |
+
|
| 115 |
+
if response.status_code != 200:
|
| 116 |
+
print(f"Failed to get status: {response.status_code}")
|
| 117 |
+
return transcript
|
| 118 |
+
|
| 119 |
+
status = response.json().get("status")
|
| 120 |
+
|
| 121 |
+
if status in ["COMPLETED", "FAILED"]:
|
| 122 |
+
print(f"Job status: {status}")
|
| 123 |
+
if status == "COMPLETED":
|
| 124 |
+
transcript = response.json().get("result")["text"]
|
| 125 |
+
return transcript
|
| 126 |
+
|
| 127 |
+
print(f"Job status: {status}, checking again in 5 seconds...")
|
| 128 |
+
time.sleep(5)
|
| 129 |
+
|
| 130 |
+
def create_pdf(transcripts, file_path):
|
| 131 |
+
doc = SimpleDocTemplate(file_path, pagesize=letter)
|
| 132 |
+
styles = getSampleStyleSheet()
|
| 133 |
+
story = []
|
| 134 |
+
|
| 135 |
+
for i, (title, transcript) in enumerate(transcripts, start=1):
|
| 136 |
+
story.append(Paragraph(f'YouTube Video {i} Title: {title}', styles['Title']))
|
| 137 |
+
story.append(Spacer(1, 12))
|
| 138 |
+
story.append(Paragraph(f'YouTube Video {i} Transcript:', styles['Heading2']))
|
| 139 |
+
story.append(Spacer(1, 12))
|
| 140 |
+
story.append(Paragraph(transcript.replace('\n', '<br/>'), styles['BodyText']))
|
| 141 |
+
story.append(Spacer(1, 24))
|
| 142 |
+
|
| 143 |
+
doc.build(story)
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
import gradio as gr
|
| 147 |
+
import os
|
| 148 |
+
from transcribe import download_youtube_video, upload_file, generate_process_id, query_job_status, create_pdf
|
| 149 |
+
from langchain_community.document_loaders import PyPDFLoader
|
| 150 |
+
from langchain_openai import ChatOpenAI
|
| 151 |
+
from openai import OpenAI, DefaultHttpxClient
|
| 152 |
+
from langchain_chroma import Chroma
|
| 153 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 154 |
+
from langchain_openai import OpenAIEmbeddings
|
| 155 |
+
from langchain_community.document_loaders import WebBaseLoader
|
| 156 |
+
from langchain_core.runnables import RunnableLambda
|
| 157 |
+
from langchain_core.runnables.passthrough import RunnableAssign
|
| 158 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 159 |
+
from langchain_core.output_parsers import StrOutputParser
|
| 160 |
+
from langchain.output_parsers import PydanticOutputParser
|
| 161 |
+
from langchain_core.pydantic_v1 import BaseModel, Field
|
| 162 |
+
from typing import List
|
| 163 |
+
from pprint import pprint
|
| 164 |
+
|
| 165 |
+
os.environ["OPENAI_API_KEY"] = "sk-proj-3XiMKGvrD8ev35tnGZ76T3BlbkFJmUSzs9Xpq8RBVF7tMyMh"
|
| 166 |
+
|
| 167 |
+
class DocumentSummaryBase(BaseModel):
|
| 168 |
+
running_summary: str = Field("", description="Running description of the document. Do not override; only update!")
|
| 169 |
+
main_ideas: List[str] = Field([], description="Most important information from the document (max 3)")
|
| 170 |
+
loose_ends: List[str] = Field([], description="Open questions that would be good to incorporate into summary, but that are yet unknown (max 3)")
|
| 171 |
+
|
| 172 |
+
def transcribe_and_save(youtube_urls):
|
| 173 |
+
download_path = os.getcwd()
|
| 174 |
+
api_key = "eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VybmFtZSI6Ijc4YTFjM2JmYzY4NTRlYmE0YWIxNzkwNzMwZjVlYjY4IiwiY3JlYXRlZF9hdCI6IjIwMjQtMDYtMjFUMDU6Mzc6MzkuNDU1MTM5In0.5-eKWqvK3x11CysTdfjvV36FityW-d_0N2hhht_HajA"
|
| 175 |
+
pdf_output_path = os.getcwd()+"/transcripts.pdf"
|
| 176 |
+
transcripts = []
|
| 177 |
+
for youtube_url in youtube_urls:
|
| 178 |
+
filepath, title = download_youtube_video(youtube_url, download_path)
|
| 179 |
+
|
| 180 |
+
if filepath and title:
|
| 181 |
+
download_url = upload_file(filepath, api_key)
|
| 182 |
+
if download_url:
|
| 183 |
+
process_id = generate_process_id(download_url, api_key)
|
| 184 |
+
if process_id:
|
| 185 |
+
transcript = query_job_status(process_id, api_key)
|
| 186 |
+
transcripts.append((title, transcript))
|
| 187 |
+
# Save all transcripts into a PDF file
|
| 188 |
+
create_pdf(transcripts, "transcripts.pdf")
|
| 189 |
+
|
| 190 |
+
def RExtract(pydantic_class, llm, prompt):
|
| 191 |
+
'''
|
| 192 |
+
Runnable Extraction module
|
| 193 |
+
Returns a knowledge dictionary populated by slot-filling extraction
|
| 194 |
+
'''
|
| 195 |
+
parser = PydanticOutputParser(pydantic_object=pydantic_class)
|
| 196 |
+
instruct_merge = RunnableAssign({'format_instructions' : lambda x: parser.get_format_instructions()})
|
| 197 |
+
def preparse(string):
|
| 198 |
+
if '{' not in string: string = '{' + string
|
| 199 |
+
if '}' not in string: string = string + '}'
|
| 200 |
+
string = (string
|
| 201 |
+
.replace("\\_", "_")
|
| 202 |
+
.replace("\n", " ")
|
| 203 |
+
.replace("\]", "]")
|
| 204 |
+
.replace("\[", "[")
|
| 205 |
+
)
|
| 206 |
+
# print(string) ## Good for diagnostics
|
| 207 |
+
return string
|
| 208 |
+
return instruct_merge | prompt | llm | preparse | parser
|
| 209 |
+
|
| 210 |
+
def RSummarizer(knowledge, llm, prompt, verbose=False):
|
| 211 |
+
'''
|
| 212 |
+
Exercise: Create a chain that summarizes
|
| 213 |
+
'''
|
| 214 |
+
def summarize_docs(docs):
|
| 215 |
+
parse_chain = RunnableAssign({"info_base": RExtract(knowledge.__class__, llm, prompt)})
|
| 216 |
+
state = {"info_base": knowledge}
|
| 217 |
+
all_summaries = [] # List to store all intermediate summaries
|
| 218 |
+
|
| 219 |
+
for i, doc in enumerate(docs):
|
| 220 |
+
state['input'] = doc.page_content
|
| 221 |
+
state = parse_chain.invoke(state)
|
| 222 |
+
|
| 223 |
+
# Store the current info_base in the list
|
| 224 |
+
all_summaries.append(state['info_base'].dict())
|
| 225 |
+
|
| 226 |
+
if verbose:
|
| 227 |
+
print(f"Considered {i+1} documents")
|
| 228 |
+
pprint(state['info_base'].dict())
|
| 229 |
+
return all_summaries
|
| 230 |
+
return RunnableLambda(summarize_docs)
|
| 231 |
+
|
| 232 |
+
def find_first_non_empty_summary(summaries):
|
| 233 |
+
for summary in reversed(summaries):
|
| 234 |
+
if summary['loose_ends'] or summary['main_ideas'] or summary['running_summary']:
|
| 235 |
+
return summary
|
| 236 |
+
return None
|
| 237 |
+
|
| 238 |
+
def create_running_summary(url):
|
| 239 |
+
loader = WebBaseLoader(url)
|
| 240 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1200,chunk_overlap=100,separators=["\n\n", "\n", ".", ";", ",", " ", ""])
|
| 241 |
+
documents = loader.load()
|
| 242 |
+
docs_split = text_splitter.split_documents(documents)
|
| 243 |
+
summary_prompt =ChatPromptTemplate.from_template("""You are generating a running summary of the document. Make it readable by a technical user.
|
| 244 |
+
After this, the old knowledge base will be replaced by the new one. Make sure a reader can still understand everything.
|
| 245 |
+
Keep it short, but as dense and useful as possible! The information should flow from chunk to (loose ends or main ideas) to running_summary.
|
| 246 |
+
Strictly output a json and nothing else do not output any strings or explanations just the json is enough.
|
| 247 |
+
The updated knowledge base keep all of the information from running_summary here: {info_base}.
|
| 248 |
+
{format_instructions}. Follow the format precisely, including quotations and commas\n\n
|
| 249 |
+
{info_base}\nWithout losing any of the info, update the knowledge base with the following: {input}""")
|
| 250 |
+
instruct_model = llm_1 | StrOutputParser()
|
| 251 |
+
summarizer = RSummarizer(DocumentSummaryBase(), instruct_model, summary_prompt, verbose=True)
|
| 252 |
+
summaries = summarizer.invoke(docs_split)
|
| 253 |
+
summary = find_first_non_empty_summary(summaries)
|
| 254 |
+
return summary
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def setup_vectorstore():
|
| 258 |
+
embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
|
| 259 |
+
vector_store = Chroma(collection_name="collection-1",embedding_function=embeddings,persist_directory="./vectorstore",)
|
| 260 |
+
loader = PyPDFLoader(os.getcwd()+"/transcripts.pdf")
|
| 261 |
+
documents = loader.load()
|
| 262 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=250,chunk_overlap=0,separators=["\n\n"])
|
| 263 |
+
text = text_splitter.split_documents(documents)
|
| 264 |
+
retriever = vector_store.as_retriever()
|
| 265 |
+
retriever.add_documents(text)
|
| 266 |
+
return retriever
|
| 267 |
+
|
| 268 |
+
def generate(content,examples):
|
| 269 |
+
chat_template = ChatPromptTemplate.from_template("""Your are provided with a few sample youtube video scripts below.
|
| 270 |
+
your task is to create a similar script for the following content provided to you below.
|
| 271 |
+
Follow the style followd in the examples and create a similar script for the content givent to you.
|
| 272 |
+
Create me a script for a youtube video explaining the following content: {content}.
|
| 273 |
+
Here are a few example scripts of my previous videos that you have to adapt: {examples}.""")
|
| 274 |
+
gen_chain = chat_template | llm_2 | StrOutputParser()
|
| 275 |
+
return gen_chain.invoke({"content": content, "examples": examples})
|
| 276 |
+
|
| 277 |
+
def docs2str(docs, title="Document"):
|
| 278 |
+
out_str = ""
|
| 279 |
+
for doc in docs:
|
| 280 |
+
doc_name = getattr(doc, 'metadata', {}).get('Title', title)
|
| 281 |
+
if doc_name:
|
| 282 |
+
out_str += f"[Quote from {doc_name}] "
|
| 283 |
+
out_str += getattr(doc, 'page_content', str(doc)) + "\n"
|
| 284 |
+
return out_str
|
| 285 |
+
|
| 286 |
+
llm_1 = ChatOpenAI(
|
| 287 |
+
model="google/gemma-2-9b-it",
|
| 288 |
+
temperature=0,
|
| 289 |
+
max_tokens=None,
|
| 290 |
+
timeout=None,
|
| 291 |
+
max_retries=2,
|
| 292 |
+
api_key="eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VybmFtZSI6Ijc4YTFjM2JmYzY4NTRlYmE0YWIxNzkwNzMwZjVlYjY4IiwiY3JlYXRlZF9hdCI6IjIwMjQtMDYtMjFUMDU6Mzc6MzkuNDU1MTM5In0.5-eKWqvK3x11CysTdfjvV36FityW-d_0N2hhht_HajA",
|
| 293 |
+
base_url="https://llm.monsterapi.ai/v1/",
|
| 294 |
+
http_client=DefaultHttpxClient(verify = False)
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
llm_2 = ChatOpenAI(
|
| 298 |
+
model="meta-llama/Meta-Llama-3.1-8B-Instruct",
|
| 299 |
+
temperature=0,
|
| 300 |
+
max_tokens=None,
|
| 301 |
+
timeout=None,
|
| 302 |
+
max_retries=2,
|
| 303 |
+
api_key="eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1c2VybmFtZSI6Ijc4YTFjM2JmYzY4NTRlYmE0YWIxNzkwNzMwZjVlYjY4IiwiY3JlYXRlZF9hdCI6IjIwMjQtMDYtMjFUMDU6Mzc6MzkuNDU1MTM5In0.5-eKWqvK3x11CysTdfjvV36FityW-d_0N2hhht_HajA",
|
| 304 |
+
base_url="https://llm.monsterapi.ai/v1/",
|
| 305 |
+
http_client=DefaultHttpxClient(verify = False)
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
def process_links(style_links, context_link):
|
| 309 |
+
# Here you can define the processing logic for the links.
|
| 310 |
+
style_links = style_links.split(",")
|
| 311 |
+
style_links = [link.strip() for link in style_links]
|
| 312 |
+
transcribe_and_save(style_links)
|
| 313 |
+
retriever = setup_vectorstore()
|
| 314 |
+
summary = create_running_summary(context_link)
|
| 315 |
+
summary = summary['running_summary']
|
| 316 |
+
print("Summarized the url successfully:", summary)
|
| 317 |
+
examples = retriever.invoke(summary)
|
| 318 |
+
return generate(summary,examples)
|
| 319 |
+
|
| 320 |
+
# Define the Gradio interface
|
| 321 |
+
with gr.Blocks() as demo:
|
| 322 |
+
gr.Markdown("## Link Processor")
|
| 323 |
+
|
| 324 |
+
style_links = gr.Textbox(lines=5, placeholder="Enter style links separated by commas", label="Style Links")
|
| 325 |
+
context_link = gr.Textbox(lines=1, placeholder="Enter context link", label="Context Link")
|
| 326 |
+
|
| 327 |
+
output = gr.Textbox(lines=2, label="Output")
|
| 328 |
+
|
| 329 |
+
process_button = gr.Button("Process")
|
| 330 |
+
|
| 331 |
+
process_button.click(process_links, inputs=[style_links, context_link], outputs=output)
|
| 332 |
+
|
| 333 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
sentence_transformers
|
| 2 |
+
pypdf
|
| 3 |
+
chromadb
|
| 4 |
+
langchain
|
| 5 |
+
langchain-openai
|
| 6 |
+
langchain_community
|
| 7 |
+
langchain_chroma
|
| 8 |
+
arxiv
|
| 9 |
+
pymupdf
|
| 10 |
+
openai
|
| 11 |
+
yt_dlp
|
| 12 |
+
reportlab
|
| 13 |
+
gradio
|