Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import torch
|
| 3 |
+
import re
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from threading import Thread
|
| 6 |
+
from transformers import TextIteratorStreamer, AutoTokenizer, AutoModelForCausalLM
|
| 7 |
+
from PIL import ImageDraw
|
| 8 |
+
from torchvision.transforms.v2 import Resize
|
| 9 |
+
|
| 10 |
+
import subprocess
|
| 11 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
| 12 |
+
|
| 13 |
+
model_id = "vikhyatk/moondream2"
|
| 14 |
+
revision = "2024-08-26"
|
| 15 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)
|
| 16 |
+
moondream = AutoModelForCausalLM.from_pretrained(
|
| 17 |
+
model_id, trust_remote_code=True, revision=revision,
|
| 18 |
+
torch_dtype=torch.bfloat16, device_map={"": "cuda"},
|
| 19 |
+
attn_implementation="flash_attention_2"
|
| 20 |
+
)
|
| 21 |
+
moondream.eval()
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
@spaces.GPU(duration=10)
|
| 25 |
+
def answer_question(img, prompt):
|
| 26 |
+
image_embeds = moondream.encode_image(img)
|
| 27 |
+
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
|
| 28 |
+
thread = Thread(
|
| 29 |
+
target=moondream.answer_question,
|
| 30 |
+
kwargs={
|
| 31 |
+
"image_embeds": image_embeds,
|
| 32 |
+
"question": prompt,
|
| 33 |
+
"tokenizer": tokenizer,
|
| 34 |
+
"streamer": streamer,
|
| 35 |
+
},
|
| 36 |
+
)
|
| 37 |
+
thread.start()
|
| 38 |
+
|
| 39 |
+
buffer = ""
|
| 40 |
+
for new_text in streamer:
|
| 41 |
+
buffer += new_text
|
| 42 |
+
yield buffer.strip()
|
| 43 |
+
|
| 44 |
+
def extract_floats(text):
|
| 45 |
+
# Regular expression to match an array of four floating point numbers
|
| 46 |
+
pattern = r"\[\s*(-?\d+\.\d+)\s*,\s*(-?\d+\.\d+)\s*,\s*(-?\d+\.\d+)\s*,\s*(-?\d+\.\d+)\s*\]"
|
| 47 |
+
match = re.search(pattern, text)
|
| 48 |
+
if match:
|
| 49 |
+
# Extract the numbers and convert them to floats
|
| 50 |
+
return [float(num) for num in match.groups()]
|
| 51 |
+
return None # Return None if no match is found
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def extract_bbox(text):
|
| 55 |
+
bbox = None
|
| 56 |
+
if extract_floats(text) is not None:
|
| 57 |
+
x1, y1, x2, y2 = extract_floats(text)
|
| 58 |
+
bbox = (x1, y1, x2, y2)
|
| 59 |
+
return bbox
|
| 60 |
+
|
| 61 |
+
def process_answer(img, answer):
|
| 62 |
+
if extract_bbox(answer) is not None:
|
| 63 |
+
x1, y1, x2, y2 = extract_bbox(answer)
|
| 64 |
+
draw_image = Resize(768)(img)
|
| 65 |
+
width, height = draw_image.size
|
| 66 |
+
x1, x2 = int(x1 * width), int(x2 * width)
|
| 67 |
+
y1, y2 = int(y1 * height), int(y2 * height)
|
| 68 |
+
bbox = (x1, y1, x2, y2)
|
| 69 |
+
ImageDraw.Draw(draw_image).rectangle(bbox, outline="red", width=3)
|
| 70 |
+
return gr.update(visible=True, value=draw_image)
|
| 71 |
+
|
| 72 |
+
return gr.update(visible=False, value=None)
|
| 73 |
+
|
| 74 |
+
with gr.Blocks() as demo:
|
| 75 |
+
gr.Markdown(
|
| 76 |
+
"""
|
| 77 |
+
# 🌔 moondream vl (new)
|
| 78 |
+
A tiny vision language model. [GitHub](https://github.com/vikhyat/moondream)
|
| 79 |
+
"""
|
| 80 |
+
)
|
| 81 |
+
with gr.Row():
|
| 82 |
+
prompt = gr.Textbox(label="Input", value="Describe this image.", scale=4)
|
| 83 |
+
submit = gr.Button("Submit")
|
| 84 |
+
with gr.Row():
|
| 85 |
+
img = gr.Image(type="pil", label="Upload an Image")
|
| 86 |
+
with gr.Column():
|
| 87 |
+
output = gr.Markdown(label="Response")
|
| 88 |
+
ann = gr.Image(visible=False, label="Annotated Image")
|
| 89 |
+
|
| 90 |
+
submit.click(answer_question, [img, prompt], output)
|
| 91 |
+
prompt.submit(answer_question, [img, prompt], output)
|
| 92 |
+
output.change(process_answer, [img, output], ann, show_progress=False)
|
| 93 |
+
|
| 94 |
+
demo.queue().launch()
|