Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
import spaces
|
| 2 |
import torch
|
| 3 |
-
import re
|
| 4 |
import os
|
| 5 |
import gradio as gr
|
| 6 |
from threading import Thread
|
|
@@ -8,7 +7,6 @@ from transformers import (
|
|
| 8 |
TextIteratorStreamer,
|
| 9 |
AutoTokenizer,
|
| 10 |
AutoModelForCausalLM,
|
| 11 |
-
StaticCache,
|
| 12 |
)
|
| 13 |
from PIL import ImageDraw
|
| 14 |
from torchvision.transforms.v2 import Resize
|
|
@@ -38,6 +36,7 @@ moondream.eval()
|
|
| 38 |
def answer_question(img, prompt):
|
| 39 |
if img is None:
|
| 40 |
yield ""
|
|
|
|
| 41 |
|
| 42 |
image_embeds = moondream.encode_image(img)
|
| 43 |
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
|
|
@@ -62,6 +61,7 @@ def answer_question(img, prompt):
|
|
| 62 |
def caption(img, mode):
|
| 63 |
if img is None:
|
| 64 |
yield ""
|
|
|
|
| 65 |
|
| 66 |
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
|
| 67 |
thread = Thread(
|
|
@@ -81,59 +81,172 @@ def caption(img, mode):
|
|
| 81 |
yield buffer.strip()
|
| 82 |
|
| 83 |
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
# Extract the numbers and convert them to floats
|
| 90 |
-
return [float(num) for num in match.groups()]
|
| 91 |
-
return None # Return None if no match is found
|
| 92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
-
|
| 95 |
-
bbox = None
|
| 96 |
-
if extract_floats(text) is not None:
|
| 97 |
-
x1, y1, x2, y2 = extract_floats(text)
|
| 98 |
-
bbox = (x1, y1, x2, y2)
|
| 99 |
-
return bbox
|
| 100 |
|
| 101 |
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
x1, x2 = int(x1 * width), int(x2 * width)
|
| 108 |
-
y1, y2 = int(y1 * height), int(y2 * height)
|
| 109 |
-
bbox = (x1, y1, x2, y2)
|
| 110 |
-
ImageDraw.Draw(draw_image).rectangle(bbox, outline="red", width=3)
|
| 111 |
-
return gr.update(visible=True, value=draw_image)
|
| 112 |
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
gr.Markdown(
|
| 125 |
"""
|
| 126 |
# 🌔 moondream vl (new)
|
| 127 |
A tiny vision language model. [GitHub](https://github.com/vikhyat/moondream)
|
| 128 |
"""
|
| 129 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
with gr.Row():
|
| 131 |
with gr.Column():
|
| 132 |
-
mode_radio = gr.Radio(
|
| 133 |
-
["Caption", "Query", "Detect"],
|
| 134 |
-
show_label=False,
|
| 135 |
-
value=lambda: "Caption",
|
| 136 |
-
)
|
| 137 |
|
| 138 |
@gr.render(inputs=[mode_radio])
|
| 139 |
def show_inputs(mode):
|
|
@@ -157,17 +270,34 @@ with gr.Blocks(title="moondream vl (new)") as demo:
|
|
| 157 |
["Short", "Normal"],
|
| 158 |
label="Caption Length",
|
| 159 |
value=lambda: "Normal",
|
|
|
|
| 160 |
)
|
| 161 |
submit = gr.Button("Submit")
|
| 162 |
img = gr.Image(type="pil", label="Upload an Image")
|
| 163 |
submit.click(caption, [img, caption_mode], output)
|
| 164 |
img.change(caption, [img, caption_mode], output)
|
| 165 |
else:
|
| 166 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
|
| 168 |
with gr.Column():
|
| 169 |
-
output = gr.Markdown(
|
| 170 |
-
|
|
|
|
|
|
|
|
|
|
| 171 |
|
|
|
|
|
|
|
| 172 |
|
| 173 |
demo.queue().launch()
|
|
|
|
| 1 |
import spaces
|
| 2 |
import torch
|
|
|
|
| 3 |
import os
|
| 4 |
import gradio as gr
|
| 5 |
from threading import Thread
|
|
|
|
| 7 |
TextIteratorStreamer,
|
| 8 |
AutoTokenizer,
|
| 9 |
AutoModelForCausalLM,
|
|
|
|
| 10 |
)
|
| 11 |
from PIL import ImageDraw
|
| 12 |
from torchvision.transforms.v2 import Resize
|
|
|
|
| 36 |
def answer_question(img, prompt):
|
| 37 |
if img is None:
|
| 38 |
yield ""
|
| 39 |
+
return
|
| 40 |
|
| 41 |
image_embeds = moondream.encode_image(img)
|
| 42 |
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
|
|
|
|
| 61 |
def caption(img, mode):
|
| 62 |
if img is None:
|
| 63 |
yield ""
|
| 64 |
+
return
|
| 65 |
|
| 66 |
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
|
| 67 |
thread = Thread(
|
|
|
|
| 81 |
yield buffer.strip()
|
| 82 |
|
| 83 |
|
| 84 |
+
@spaces.GPU(duration=10)
|
| 85 |
+
def detect(img, object):
|
| 86 |
+
w, h = img.size
|
| 87 |
+
if w > 768 or h > 768:
|
| 88 |
+
img = Resize(768)(img)
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
+
objs = moondream.detect(img, object, tokenizer)
|
| 91 |
+
draw_image = ImageDraw.Draw(img)
|
| 92 |
+
for o in objs:
|
| 93 |
+
draw_image.rectangle(
|
| 94 |
+
(o["x_min"] * w, o["y_min"] * h, o["x_max"] * w, o["y_max"] * h),
|
| 95 |
+
outline="red",
|
| 96 |
+
width=3,
|
| 97 |
+
)
|
| 98 |
|
| 99 |
+
return gr.update(visible=True, value=img)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
|
| 102 |
+
js = """
|
| 103 |
+
function createBgAnimation() {
|
| 104 |
+
var canvas = document.createElement('canvas');
|
| 105 |
+
canvas.id = 'life-canvas';
|
| 106 |
+
document.body.appendChild(canvas);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
+
var canvas = document.getElementById('life-canvas');
|
| 109 |
+
var ctx = canvas.getContext('2d');
|
| 110 |
+
|
| 111 |
+
function resizeCanvas() {
|
| 112 |
+
canvas.width = window.innerWidth;
|
| 113 |
+
canvas.height = window.innerHeight;
|
| 114 |
+
}
|
| 115 |
+
resizeCanvas();
|
| 116 |
+
window.addEventListener('resize', resizeCanvas);
|
| 117 |
|
| 118 |
+
var cellSize = 8;
|
| 119 |
+
var cols = Math.ceil(canvas.width / cellSize);
|
| 120 |
+
var rows = Math.ceil(canvas.height / cellSize);
|
| 121 |
|
| 122 |
+
// Track cell age for color variation
|
| 123 |
+
var grid = new Array(cols).fill(null)
|
| 124 |
+
.map(() => new Array(rows).fill(null)
|
| 125 |
+
.map(() => Math.random() > 0.8 ? 1 : 0)); // If alive, start with age 1
|
| 126 |
+
|
| 127 |
+
function countNeighbors(grid, x, y) {
|
| 128 |
+
var sum = 0;
|
| 129 |
+
for (var i = -1; i < 2; i++) {
|
| 130 |
+
for (var j = -1; j < 2; j++) {
|
| 131 |
+
var col = (x + i + cols) % cols;
|
| 132 |
+
var row = (y + j + rows) % rows;
|
| 133 |
+
sum += grid[col][row] ? 1 : 0;
|
| 134 |
+
}
|
| 135 |
+
}
|
| 136 |
+
sum -= grid[x][y] ? 1 : 0;
|
| 137 |
+
return sum;
|
| 138 |
+
}
|
| 139 |
+
|
| 140 |
+
function computeNextGeneration() {
|
| 141 |
+
var next = grid.map(arr => [...arr]);
|
| 142 |
+
|
| 143 |
+
for (var i = 0; i < cols; i++) {
|
| 144 |
+
for (var j = 0; j < rows; j++) {
|
| 145 |
+
var neighbors = countNeighbors(grid, i, j);
|
| 146 |
+
var state = grid[i][j];
|
| 147 |
+
|
| 148 |
+
if (state) {
|
| 149 |
+
if (neighbors < 2 || neighbors > 3) {
|
| 150 |
+
next[i][j] = 0; // Cell dies
|
| 151 |
+
} else {
|
| 152 |
+
next[i][j] = Math.min(state + 1, 5); // Age the cell, max age of 5
|
| 153 |
+
}
|
| 154 |
+
} else if (neighbors === 3) {
|
| 155 |
+
next[i][j] = 1; // New cell born
|
| 156 |
+
}
|
| 157 |
+
}
|
| 158 |
+
}
|
| 159 |
+
|
| 160 |
+
grid = next;
|
| 161 |
+
}
|
| 162 |
+
|
| 163 |
+
function getColor(age, isDarkMode) {
|
| 164 |
+
// Light mode colors
|
| 165 |
+
var lightColors = {
|
| 166 |
+
1: '#dae1f5', // Light blue-grey
|
| 167 |
+
2: '#d3e0f4',
|
| 168 |
+
3: '#ccdff3',
|
| 169 |
+
4: '#c5def2',
|
| 170 |
+
5: '#beddf1' // Slightly deeper blue-grey
|
| 171 |
+
};
|
| 172 |
+
|
| 173 |
+
// Dark mode colors
|
| 174 |
+
var darkColors = {
|
| 175 |
+
1: '#4a5788', // Deep blue-grey
|
| 176 |
+
2: '#4c5a8d',
|
| 177 |
+
3: '#4e5d92',
|
| 178 |
+
4: '#506097',
|
| 179 |
+
5: '#52639c' // Brighter blue-grey
|
| 180 |
+
};
|
| 181 |
+
|
| 182 |
+
return isDarkMode ? darkColors[age] : lightColors[age];
|
| 183 |
+
}
|
| 184 |
+
|
| 185 |
+
function draw() {
|
| 186 |
+
var isDarkMode = document.body.classList.contains('dark');
|
| 187 |
+
ctx.fillStyle = isDarkMode ? '#333' : '#f0f0f0';
|
| 188 |
+
ctx.fillRect(0, 0, canvas.width, canvas.height);
|
| 189 |
+
|
| 190 |
+
for (var i = 0; i < cols; i++) {
|
| 191 |
+
for (var j = 0; j < rows; j++) {
|
| 192 |
+
if (grid[i][j]) {
|
| 193 |
+
ctx.fillStyle = getColor(grid[i][j], isDarkMode);
|
| 194 |
+
ctx.fillRect(i * cellSize, j * cellSize, cellSize - 1, cellSize - 1);
|
| 195 |
+
}
|
| 196 |
+
}
|
| 197 |
+
}
|
| 198 |
+
}
|
| 199 |
+
|
| 200 |
+
var lastFrame = 0;
|
| 201 |
+
var frameInterval = 300;
|
| 202 |
+
|
| 203 |
+
function animate(timestamp) {
|
| 204 |
+
if (timestamp - lastFrame >= frameInterval) {
|
| 205 |
+
draw();
|
| 206 |
+
computeNextGeneration();
|
| 207 |
+
lastFrame = timestamp;
|
| 208 |
+
}
|
| 209 |
+
requestAnimationFrame(animate);
|
| 210 |
+
}
|
| 211 |
+
|
| 212 |
+
animate(0);
|
| 213 |
+
}
|
| 214 |
+
"""
|
| 215 |
+
|
| 216 |
+
css = """
|
| 217 |
+
.output-text span p {
|
| 218 |
+
font-size: 1.4rem !important;
|
| 219 |
+
}
|
| 220 |
+
|
| 221 |
+
#life-canvas {
|
| 222 |
+
position: fixed;
|
| 223 |
+
top: 0;
|
| 224 |
+
left: 0;
|
| 225 |
+
width: 100%;
|
| 226 |
+
height: 100%;
|
| 227 |
+
z-index: -1;
|
| 228 |
+
opacity: 0.3;
|
| 229 |
+
}
|
| 230 |
+
|
| 231 |
+
body gradio-app {
|
| 232 |
+
background: none !important;
|
| 233 |
+
}
|
| 234 |
+
"""
|
| 235 |
+
|
| 236 |
+
with gr.Blocks(title="moondream vl (new)", css=css, js=js) as demo:
|
| 237 |
gr.Markdown(
|
| 238 |
"""
|
| 239 |
# 🌔 moondream vl (new)
|
| 240 |
A tiny vision language model. [GitHub](https://github.com/vikhyat/moondream)
|
| 241 |
"""
|
| 242 |
)
|
| 243 |
+
mode_radio = gr.Radio(
|
| 244 |
+
["Caption", "Query", "Detect"],
|
| 245 |
+
show_label=False,
|
| 246 |
+
value=lambda: "Caption",
|
| 247 |
+
)
|
| 248 |
with gr.Row():
|
| 249 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
|
| 251 |
@gr.render(inputs=[mode_radio])
|
| 252 |
def show_inputs(mode):
|
|
|
|
| 270 |
["Short", "Normal"],
|
| 271 |
label="Caption Length",
|
| 272 |
value=lambda: "Normal",
|
| 273 |
+
scale=4,
|
| 274 |
)
|
| 275 |
submit = gr.Button("Submit")
|
| 276 |
img = gr.Image(type="pil", label="Upload an Image")
|
| 277 |
submit.click(caption, [img, caption_mode], output)
|
| 278 |
img.change(caption, [img, caption_mode], output)
|
| 279 |
else:
|
| 280 |
+
with gr.Group():
|
| 281 |
+
with gr.Row():
|
| 282 |
+
prompt = gr.Textbox(
|
| 283 |
+
label="Object",
|
| 284 |
+
value="Cat",
|
| 285 |
+
scale=4,
|
| 286 |
+
)
|
| 287 |
+
submit = gr.Button("Submit")
|
| 288 |
+
img = gr.Image(type="pil", label="Upload an Image")
|
| 289 |
+
submit.click(detect, [img, prompt], ann)
|
| 290 |
+
prompt.submit(detect, [img, prompt], ann)
|
| 291 |
+
img.change(detect, [img, prompt], ann)
|
| 292 |
|
| 293 |
with gr.Column():
|
| 294 |
+
output = gr.Markdown(
|
| 295 |
+
label="Response",
|
| 296 |
+
elem_classes=["output-text"],
|
| 297 |
+
)
|
| 298 |
+
ann = gr.Image(visible=False, show_label=False)
|
| 299 |
|
| 300 |
+
mode_radio.change(lambda: "", [], output)
|
| 301 |
+
mode_radio.change(lambda: gr.update(visible=False, value=None), [], ann)
|
| 302 |
|
| 303 |
demo.queue().launch()
|