Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,32 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import torch
|
|
|
|
| 3 |
import os
|
| 4 |
import gradio as gr
|
| 5 |
from threading import Thread
|
|
@@ -11,24 +38,24 @@ from transformers import (
|
|
| 11 |
from PIL import ImageDraw
|
| 12 |
from torchvision.transforms.v2 import Resize
|
| 13 |
|
| 14 |
-
|
|
|
|
| 15 |
|
| 16 |
-
subprocess.run(
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
)
|
| 21 |
|
| 22 |
auth_token = os.environ.get("TOKEN_FROM_SECRET") or True
|
| 23 |
tokenizer = AutoTokenizer.from_pretrained("vikhyatk/moondream2")
|
| 24 |
moondream = AutoModelForCausalLM.from_pretrained(
|
| 25 |
"vikhyatk/moondream-next",
|
| 26 |
-
revision="591ff5569240caf61126be6b080ff5c9370b87d4",
|
| 27 |
trust_remote_code=True,
|
| 28 |
torch_dtype=torch.float16,
|
| 29 |
device_map={"": "cuda"},
|
| 30 |
attn_implementation="flash_attention_2",
|
| 31 |
-
token=auth_token,
|
| 32 |
)
|
| 33 |
moondream.eval()
|
| 34 |
|
|
@@ -36,17 +63,20 @@ moondream.eval()
|
|
| 36 |
@spaces.GPU(duration=10)
|
| 37 |
def answer_question(img, prompt):
|
| 38 |
if img is None:
|
| 39 |
-
yield ""
|
| 40 |
return
|
| 41 |
|
| 42 |
image_embeds = moondream.encode_image(img)
|
| 43 |
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
|
|
|
|
| 44 |
thread = Thread(
|
| 45 |
target=moondream.answer_question,
|
| 46 |
kwargs={
|
| 47 |
"image_embeds": image_embeds,
|
| 48 |
"question": prompt,
|
| 49 |
"tokenizer": tokenizer,
|
|
|
|
|
|
|
| 50 |
"streamer": streamer,
|
| 51 |
},
|
| 52 |
)
|
|
@@ -55,7 +85,11 @@ def answer_question(img, prompt):
|
|
| 55 |
buffer = ""
|
| 56 |
for new_text in streamer:
|
| 57 |
buffer += new_text
|
| 58 |
-
yield buffer.strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
|
| 61 |
@spaces.GPU(duration=10)
|
|
@@ -84,6 +118,10 @@ def caption(img, mode):
|
|
| 84 |
|
| 85 |
@spaces.GPU(duration=10)
|
| 86 |
def detect(img, object):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
w, h = img.size
|
| 88 |
if w > 768 or h > 768:
|
| 89 |
img = Resize(768)(img)
|
|
@@ -97,7 +135,7 @@ def detect(img, object):
|
|
| 97 |
width=3,
|
| 98 |
)
|
| 99 |
|
| 100 |
-
|
| 101 |
|
| 102 |
|
| 103 |
js = """
|
|
@@ -173,22 +211,27 @@ js = """
|
|
| 173 |
|
| 174 |
// Dark mode colors
|
| 175 |
var darkColors = {
|
|
|
|
| 176 |
1: '#4a5788', // Deep blue-grey
|
| 177 |
2: '#4c5a8d',
|
| 178 |
3: '#4e5d92',
|
| 179 |
4: '#506097',
|
| 180 |
5: '#52639c' // Brighter blue-grey
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
};
|
| 182 |
|
| 183 |
return isDarkMode ? darkColors[age] : lightColors[age];
|
| 184 |
}
|
| 185 |
|
| 186 |
function draw() {
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
ctx.fillStyle = isDarkMode ? '#333' : '#f0f0f0';
|
| 190 |
ctx.fillRect(0, 0, canvas.width, canvas.height);
|
| 191 |
-
|
| 192 |
for (var i = 0; i < cols; i++) {
|
| 193 |
for (var j = 0; j < rows; j++) {
|
| 194 |
if (grid[i][j]) {
|
|
@@ -220,6 +263,10 @@ css = """
|
|
| 220 |
font-size: 1.4rem !important;
|
| 221 |
}
|
| 222 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
#life-canvas {
|
| 224 |
position: fixed;
|
| 225 |
top: 0;
|
|
@@ -262,9 +309,9 @@ with gr.Blocks(title="moondream vl (new)", css=css, js=js) as demo:
|
|
| 262 |
)
|
| 263 |
submit = gr.Button("Submit")
|
| 264 |
img = gr.Image(type="pil", label="Upload an Image")
|
| 265 |
-
submit.click(answer_question, [img, prompt], output)
|
| 266 |
-
prompt.submit(answer_question, [img, prompt], output)
|
| 267 |
-
img.change(answer_question, [img, prompt], output)
|
| 268 |
elif mode == "Caption":
|
| 269 |
with gr.Group():
|
| 270 |
with gr.Row():
|
|
@@ -278,7 +325,7 @@ with gr.Blocks(title="moondream vl (new)", css=css, js=js) as demo:
|
|
| 278 |
img = gr.Image(type="pil", label="Upload an Image")
|
| 279 |
submit.click(caption, [img, caption_mode], output)
|
| 280 |
img.change(caption, [img, caption_mode], output)
|
| 281 |
-
|
| 282 |
with gr.Group():
|
| 283 |
with gr.Row():
|
| 284 |
prompt = gr.Textbox(
|
|
@@ -288,18 +335,21 @@ with gr.Blocks(title="moondream vl (new)", css=css, js=js) as demo:
|
|
| 288 |
)
|
| 289 |
submit = gr.Button("Submit")
|
| 290 |
img = gr.Image(type="pil", label="Upload an Image")
|
| 291 |
-
submit.click(detect, [img, prompt], ann)
|
| 292 |
-
prompt.submit(detect, [img, prompt], ann)
|
| 293 |
-
img.change(detect, [img, prompt], ann)
|
|
|
|
|
|
|
| 294 |
|
| 295 |
with gr.Column():
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
|
|
|
| 304 |
|
| 305 |
demo.queue().launch()
|
|
|
|
| 1 |
+
try:
|
| 2 |
+
import spaces
|
| 3 |
+
|
| 4 |
+
IN_SPACES = True
|
| 5 |
+
except ImportError:
|
| 6 |
+
from functools import wraps
|
| 7 |
+
import inspect
|
| 8 |
+
|
| 9 |
+
class spaces:
|
| 10 |
+
@staticmethod
|
| 11 |
+
def GPU(duration):
|
| 12 |
+
def decorator(func):
|
| 13 |
+
@wraps(func) # Preserves the original function's metadata
|
| 14 |
+
def wrapper(*args, **kwargs):
|
| 15 |
+
if inspect.isgeneratorfunction(func):
|
| 16 |
+
# If the decorated function is a generator, yield from it
|
| 17 |
+
yield from func(*args, **kwargs)
|
| 18 |
+
else:
|
| 19 |
+
# For regular functions, just return the result
|
| 20 |
+
return func(*args, **kwargs)
|
| 21 |
+
|
| 22 |
+
return wrapper
|
| 23 |
+
|
| 24 |
+
return decorator
|
| 25 |
+
|
| 26 |
+
IN_SPACES = False
|
| 27 |
+
|
| 28 |
import torch
|
| 29 |
+
from queue import Queue
|
| 30 |
import os
|
| 31 |
import gradio as gr
|
| 32 |
from threading import Thread
|
|
|
|
| 38 |
from PIL import ImageDraw
|
| 39 |
from torchvision.transforms.v2 import Resize
|
| 40 |
|
| 41 |
+
if IN_SPACES:
|
| 42 |
+
import subprocess
|
| 43 |
|
| 44 |
+
subprocess.run(
|
| 45 |
+
"pip install flash-attn --no-build-isolation",
|
| 46 |
+
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
| 47 |
+
shell=True,
|
| 48 |
+
)
|
| 49 |
|
| 50 |
auth_token = os.environ.get("TOKEN_FROM_SECRET") or True
|
| 51 |
tokenizer = AutoTokenizer.from_pretrained("vikhyatk/moondream2")
|
| 52 |
moondream = AutoModelForCausalLM.from_pretrained(
|
| 53 |
"vikhyatk/moondream-next",
|
|
|
|
| 54 |
trust_remote_code=True,
|
| 55 |
torch_dtype=torch.float16,
|
| 56 |
device_map={"": "cuda"},
|
| 57 |
attn_implementation="flash_attention_2",
|
| 58 |
+
token=auth_token if IN_SPACES else None,
|
| 59 |
)
|
| 60 |
moondream.eval()
|
| 61 |
|
|
|
|
| 63 |
@spaces.GPU(duration=10)
|
| 64 |
def answer_question(img, prompt):
|
| 65 |
if img is None:
|
| 66 |
+
yield "", ""
|
| 67 |
return
|
| 68 |
|
| 69 |
image_embeds = moondream.encode_image(img)
|
| 70 |
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
|
| 71 |
+
queue = Queue()
|
| 72 |
thread = Thread(
|
| 73 |
target=moondream.answer_question,
|
| 74 |
kwargs={
|
| 75 |
"image_embeds": image_embeds,
|
| 76 |
"question": prompt,
|
| 77 |
"tokenizer": tokenizer,
|
| 78 |
+
"allow_cot": True,
|
| 79 |
+
"result_queue": queue,
|
| 80 |
"streamer": streamer,
|
| 81 |
},
|
| 82 |
)
|
|
|
|
| 85 |
buffer = ""
|
| 86 |
for new_text in streamer:
|
| 87 |
buffer += new_text
|
| 88 |
+
yield buffer.strip(), "Thinking..."
|
| 89 |
+
|
| 90 |
+
answer = queue.get()
|
| 91 |
+
# yield answer["answer"], answer["thought"]
|
| 92 |
+
yield answer["answer"], ""
|
| 93 |
|
| 94 |
|
| 95 |
@spaces.GPU(duration=10)
|
|
|
|
| 118 |
|
| 119 |
@spaces.GPU(duration=10)
|
| 120 |
def detect(img, object):
|
| 121 |
+
if img is None:
|
| 122 |
+
yield "", gr.update(visible=False, value=None)
|
| 123 |
+
return
|
| 124 |
+
|
| 125 |
w, h = img.size
|
| 126 |
if w > 768 or h > 768:
|
| 127 |
img = Resize(768)(img)
|
|
|
|
| 135 |
width=3,
|
| 136 |
)
|
| 137 |
|
| 138 |
+
yield f"{len(objs)} detected", gr.update(visible=True, value=img)
|
| 139 |
|
| 140 |
|
| 141 |
js = """
|
|
|
|
| 211 |
|
| 212 |
// Dark mode colors
|
| 213 |
var darkColors = {
|
| 214 |
+
/*
|
| 215 |
1: '#4a5788', // Deep blue-grey
|
| 216 |
2: '#4c5a8d',
|
| 217 |
3: '#4e5d92',
|
| 218 |
4: '#506097',
|
| 219 |
5: '#52639c' // Brighter blue-grey
|
| 220 |
+
*/
|
| 221 |
+
1: 'rgb(16, 20, 32)',
|
| 222 |
+
2: 'rgb(21, 25, 39)',
|
| 223 |
+
3: 'rgb(26, 30, 46)',
|
| 224 |
+
4: 'rgb(31, 35, 53)',
|
| 225 |
+
5: 'rgb(36, 40, 60)'
|
| 226 |
};
|
| 227 |
|
| 228 |
return isDarkMode ? darkColors[age] : lightColors[age];
|
| 229 |
}
|
| 230 |
|
| 231 |
function draw() {
|
| 232 |
+
var isDarkMode = document.body.classList.contains('dark');
|
| 233 |
+
ctx.fillStyle = isDarkMode ? '#0b0f19' : '#f0f0f0';
|
|
|
|
| 234 |
ctx.fillRect(0, 0, canvas.width, canvas.height);
|
|
|
|
| 235 |
for (var i = 0; i < cols; i++) {
|
| 236 |
for (var j = 0; j < rows; j++) {
|
| 237 |
if (grid[i][j]) {
|
|
|
|
| 263 |
font-size: 1.4rem !important;
|
| 264 |
}
|
| 265 |
|
| 266 |
+
.chain-of-thought span p {
|
| 267 |
+
opacity: 0.7 !important;
|
| 268 |
+
}
|
| 269 |
+
|
| 270 |
#life-canvas {
|
| 271 |
position: fixed;
|
| 272 |
top: 0;
|
|
|
|
| 309 |
)
|
| 310 |
submit = gr.Button("Submit")
|
| 311 |
img = gr.Image(type="pil", label="Upload an Image")
|
| 312 |
+
submit.click(answer_question, [img, prompt], [output, thought])
|
| 313 |
+
prompt.submit(answer_question, [img, prompt], [output, thought])
|
| 314 |
+
img.change(answer_question, [img, prompt], [output, thought])
|
| 315 |
elif mode == "Caption":
|
| 316 |
with gr.Group():
|
| 317 |
with gr.Row():
|
|
|
|
| 325 |
img = gr.Image(type="pil", label="Upload an Image")
|
| 326 |
submit.click(caption, [img, caption_mode], output)
|
| 327 |
img.change(caption, [img, caption_mode], output)
|
| 328 |
+
elif mode == "Detect":
|
| 329 |
with gr.Group():
|
| 330 |
with gr.Row():
|
| 331 |
prompt = gr.Textbox(
|
|
|
|
| 335 |
)
|
| 336 |
submit = gr.Button("Submit")
|
| 337 |
img = gr.Image(type="pil", label="Upload an Image")
|
| 338 |
+
submit.click(detect, [img, prompt], [thought, ann])
|
| 339 |
+
prompt.submit(detect, [img, prompt], [thought, ann])
|
| 340 |
+
img.change(detect, [img, prompt], [thought, ann])
|
| 341 |
+
else:
|
| 342 |
+
gr.Markdown("Coming soon!")
|
| 343 |
|
| 344 |
with gr.Column():
|
| 345 |
+
thought = gr.Markdown(elem_classes=["chain-of-thought"])
|
| 346 |
+
output = gr.Markdown(label="Response", elem_classes=["output-text"])
|
| 347 |
+
ann = gr.Image(visible=False)
|
| 348 |
+
|
| 349 |
+
mode_radio.change(
|
| 350 |
+
lambda: ("", "", gr.update(visible=False, value=None)),
|
| 351 |
+
[],
|
| 352 |
+
[output, thought, ann],
|
| 353 |
+
)
|
| 354 |
|
| 355 |
demo.queue().launch()
|