Spaces:
Sleeping
Sleeping
added lens blur
Browse files- app.py +60 -22
- requirements.txt +1 -2
app.py
CHANGED
|
@@ -1,18 +1,28 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
from transformers import MobileViTFeatureExtractor, MobileViTForSemanticSegmentation
|
| 3 |
-
from PIL import Image
|
| 4 |
import numpy as np
|
| 5 |
-
import cv2
|
| 6 |
-
import torch
|
| 7 |
|
| 8 |
# Function to apply Gaussian Blur
|
| 9 |
-
def apply_gaussian_blur(image, sigma=15):
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
# Function to load and process image for segmentation
|
| 15 |
-
def
|
| 16 |
feature_extractor = MobileViTFeatureExtractor.from_pretrained("apple/mobilevit-small")
|
| 17 |
model = MobileViTForSemanticSegmentation.from_pretrained("apple/mobilevit-small")
|
| 18 |
|
|
@@ -21,11 +31,35 @@ def segment_image(image):
|
|
| 21 |
|
| 22 |
# Get segmentation mask
|
| 23 |
logits = outputs.logits
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
# Streamlit interface
|
| 31 |
st.title("Image Segmentation and Blur Effects")
|
|
@@ -35,15 +69,19 @@ uploaded_file = st.file_uploader("Upload an Image (PNG, JPG, JPEG)", type=["png"
|
|
| 35 |
|
| 36 |
if uploaded_file:
|
| 37 |
image = Image.open(uploaded_file)
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
# Apply Gaussian Blur
|
| 41 |
sigma = st.slider("Gaussian Blur Intensity", 5, 50, 15)
|
| 42 |
-
blurred_image = apply_gaussian_blur(image, sigma)
|
| 43 |
-
st.image(blurred_image, caption="Gaussian Blurred Image",
|
| 44 |
|
| 45 |
-
# Perform
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from transformers import MobileViTFeatureExtractor, MobileViTForSemanticSegmentation, pipeline
|
| 3 |
+
from PIL import Image, ImageFilter, ImageOps
|
| 4 |
import numpy as np
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# Function to apply Gaussian Blur
|
| 7 |
+
def apply_gaussian_blur(image, predicted_mask, sigma=15):
|
| 8 |
+
print(f"Predicted Mask: {predicted_mask}")
|
| 9 |
+
mask = Image.fromarray(
|
| 10 |
+
(predicted_mask.cpu().numpy() * 255).astype(np.uint8)
|
| 11 |
+
).resize(image.size).convert('L')
|
| 12 |
+
|
| 13 |
+
foreground = Image.composite(
|
| 14 |
+
image, Image.new('RGB', image.size), mask
|
| 15 |
+
)
|
| 16 |
+
background = Image.composite(
|
| 17 |
+
image.filter(ImageFilter.GaussianBlur(sigma)), image,
|
| 18 |
+
ImageOps.invert(mask)
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
final_image = Image.composite(foreground, background, mask)
|
| 22 |
+
return final_image
|
| 23 |
|
| 24 |
# Function to load and process image for segmentation
|
| 25 |
+
def get_segmentation_mask(image):
|
| 26 |
feature_extractor = MobileViTFeatureExtractor.from_pretrained("apple/mobilevit-small")
|
| 27 |
model = MobileViTForSemanticSegmentation.from_pretrained("apple/mobilevit-small")
|
| 28 |
|
|
|
|
| 31 |
|
| 32 |
# Get segmentation mask
|
| 33 |
logits = outputs.logits
|
| 34 |
+
predicted_mask = logits.argmax(1).squeeze(0)
|
| 35 |
+
return predicted_mask
|
| 36 |
+
|
| 37 |
+
def get_depth_mask(image):
|
| 38 |
+
pipe = pipeline(task="depth-estimation", model="Intel/dpt-beit-base-384")
|
| 39 |
+
|
| 40 |
+
result = pipe(image)
|
| 41 |
+
depth_map = result["depth"]
|
| 42 |
+
|
| 43 |
+
return np.array(depth_map)
|
| 44 |
+
|
| 45 |
+
def add_depth_based_blur(depth_array, image):
|
| 46 |
+
depth_normalized = (depth_array - depth_array.min()) / (depth_array.max() - depth_array.min()) * 15
|
| 47 |
+
|
| 48 |
+
image_array = np.array(image)
|
| 49 |
+
|
| 50 |
+
blurred_images = [
|
| 51 |
+
np.array(image.filter(ImageFilter.GaussianBlur(radius)))
|
| 52 |
+
for radius in range(16)
|
| 53 |
+
]
|
| 54 |
+
|
| 55 |
+
depth_blurred_array = np.zeros_like(image_array)
|
| 56 |
+
|
| 57 |
+
for i in range(depth_normalized.shape[0]):
|
| 58 |
+
for j in range(depth_normalized.shape[1]):
|
| 59 |
+
blur_lvl = 15 - int(depth_normalized[i, j])
|
| 60 |
+
depth_blurred_array[i, j] = blurred_images[blur_lvl][i, j]
|
| 61 |
+
|
| 62 |
+
return Image.fromarray(depth_blurred_array.astype(np.uint8))
|
| 63 |
|
| 64 |
# Streamlit interface
|
| 65 |
st.title("Image Segmentation and Blur Effects")
|
|
|
|
| 69 |
|
| 70 |
if uploaded_file:
|
| 71 |
image = Image.open(uploaded_file)
|
| 72 |
+
image = image.resize((512, 512))
|
| 73 |
+
st.image(image, caption="Uploaded Image", use_container_width=True)
|
| 74 |
+
|
| 75 |
+
predicted_mask = get_segmentation_mask(image)
|
| 76 |
|
| 77 |
# Apply Gaussian Blur
|
| 78 |
sigma = st.slider("Gaussian Blur Intensity", 5, 50, 15)
|
| 79 |
+
blurred_image = apply_gaussian_blur(image, predicted_mask, sigma)
|
| 80 |
+
st.image(blurred_image, caption="Gaussian Blurred Image", use_container_width=True)
|
| 81 |
|
| 82 |
+
# Perform lens blur
|
| 83 |
+
st.write("Calculating depth and applying lens blur...")
|
| 84 |
+
with st.spinner("Applying lens blur... This might take a few moments."):
|
| 85 |
+
depth_array = get_depth_mask(image)
|
| 86 |
+
lens_blurred_img = add_depth_based_blur(depth_array, image)
|
| 87 |
+
st.image(lens_blurred_img, caption="Lens Blur Effect Image", use_container_width=True)
|
requirements.txt
CHANGED
|
@@ -1,5 +1,4 @@
|
|
| 1 |
streamlit
|
| 2 |
transformers
|
| 3 |
torch
|
| 4 |
-
pillow
|
| 5 |
-
opencv-python
|
|
|
|
| 1 |
streamlit
|
| 2 |
transformers
|
| 3 |
torch
|
| 4 |
+
pillow
|
|
|