File size: 7,583 Bytes
49c6db7 8786ac3 49c6db7 f0821bf 44c9541 49c6db7 3e66137 d874e72 3e66137 49c6db7 180fb05 644bb2c 49c6db7 3e66137 49c6db7 f0821bf 49c6db7 f0821bf 1c5339e f0821bf c034f55 736285e c034f55 49c6db7 32b0ba4 49c6db7 eeb07d9 ded4361 a887322 644bb2c a887322 958ea27 a887322 49c6db7 18b4441 8a8ccfd 18b4441 49c6db7 958ea27 49c6db7 18b4441 958ea27 18b4441 4c3c584 b2eef14 7170f20 a13d968 7170f20 4c3c584 7170f20 49c6db7 2c27168 49c6db7 fd1e2f9 25641bf 2c27168 c3abe48 18b4441 77e473c 18b4441 c3abe48 2c27168 18b4441 c3abe48 18b4441 0305d39 b2eef14 7170f20 a3dc09f 25641bf 2c27168 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import numpy as np
import gradio as gr
import spaces
import cv2
from cellpose import models
from matplotlib.colors import hsv_to_rgb
import matplotlib.pyplot as plt
import os, io, base64
from PIL import Image
# @title Data retrieval
def download_weights():
import os, requests
fname = ['cpsam']
url = ["https://osf.io/d7c8e/download"]
for j in range(len(url)):
if not os.path.isfile(fname[j]):
try:
r = requests.get(url[j])
except requests.ConnectionError:
print("!!! Failed to download data !!!")
else:
if r.status_code != requests.codes.ok:
print("!!! Failed to download data !!!")
else:
with open(fname[j], "wb") as fid:
fid.write(r.content)
try:
#download_weights()
model = models.CellposeModel(gpu=True, pretrained_model="cyto3")
except Exception as e:
print(f"Error loading model: {e}")
exit(1)
def plot_flows(y):
Y = (np.clip(normalize99(y[0][0]),0,1) - 0.5) * 2
X = (np.clip(normalize99(y[1][0]),0,1) - 0.5) * 2
H = (np.arctan2(Y, X) + np.pi) / (2*np.pi)
S = normalize99(y[0][0]**2 + y[1][0]**2)
HSV = np.concatenate((H[:,:,np.newaxis], S[:,:,np.newaxis], S[:,:,np.newaxis]), axis=-1)
HSV = np.clip(HSV, 0.0, 1.0)
flow = (hsv_to_rgb(HSV) * 255).astype(np.uint8)
return flow
def plot_outlines(img, masks):
outpix = []
contours, hierarchy = cv2.findContours(masks.astype(np.int32), mode=cv2.RETR_FLOODFILL, method=cv2.CHAIN_APPROX_SIMPLE)
for c in range(len(contours)):
pix = contours[c].astype(int).squeeze()
if len(pix)>4:
peri = cv2.arcLength(contours[c], True)
approx = cv2.approxPolyDP(contours[c], 0.001, True)[:,0,:]
outpix.append(approx)
figsize = (6,6)
if img.shape[0]>img.shape[1]:
figsize = (6*img.shape[1]/img.shape[0], 6)
else:
figsize = (6, 6*img.shape[0]/img.shape[1])
fig = plt.figure(figsize=figsize, facecolor='k')
ax = fig.add_axes([0.0,0.0,1,1])
ax.set_xlim([0,img.shape[1]])
ax.set_ylim([0,img.shape[0]])
ax.imshow(img[::-1], origin='upper', aspect = 'auto')
if outpix is not None:
for o in outpix:
ax.plot(o[:,0], img.shape[0]-o[:,1], color=[1,0,0], lw=1)
ax.axis('off')
#bytes_image = io.BytesIO()
#plt.savefig(bytes_image, format='png', facecolor=fig.get_facecolor(), edgecolor='none')
#bytes_image.seek(0)
#img_arr = np.frombuffer(bytes_image.getvalue(), dtype=np.uint8)
#bytes_image.close()
#img = cv2.imdecode(img_arr, 1)
#img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
#del bytes_image
#fig.clf()
#plt.close(fig)
buf = io.BytesIO()
fig.savefig(buf, bbox_inches='tight')
buf.seek(0)
output_pil_img = Image.open(buf)
return output_pil_img
def plot_overlay(img, masks):
img = normalize99(img.astype(np.float32).mean(axis=-1))
img -= img.min()
img /= img.max()
HSV = np.zeros((img.shape[0], img.shape[1], 3), np.float32)
HSV[:,:,2] = np.clip(img*1.5, 0, 1.0)
for n in range(int(masks.max())):
ipix = (masks==n+1).nonzero()
HSV[ipix[0],ipix[1],0] = np.random.rand()
HSV[ipix[0],ipix[1],1] = 1.0
RGB = (hsv_to_rgb(HSV) * 255).astype(np.uint8)
return RGB
def normalize99(img):
X = img.copy()
X = (X - np.percentile(X, 1)) / (np.percentile(X, 99) - np.percentile(X, 1))
return X
def image_resize(img, resize=400):
ny,nx = img.shape[:2]
if np.array(img.shape).max() > resize:
if ny>nx:
nx = int(nx/ny * resize)
ny = resize
else:
ny = int(ny/nx * resize)
nx = resize
shape = (nx,ny)
img = cv2.resize(img, shape)
img = img.astype(np.uint8)
return img
@spaces.GPU(duration=10)
def run_model_gpu(img):
masks, flows, _ = model.eval(img, channels = [0,0])
return masks, flows
#@spaces.GPU(duration=10)
def cellpose_segment(img_input):
img = image_resize(img_input)
masks, flows = run_model_gpu(img)
#masks, flows, _ = model.eval(img, channels=[0,0])
flows = flows[0]
# masks = np.zeros(img.shape[:2])
# flows = np.zeros_like(img)
outpix = plot_outlines(img, masks)
overlay = plot_overlay(img, masks)
target_size = (img_input.shape[1], img_input.shape[0])
if (target_size[0]!=img.shape[1] or target_size[1]!=img.shape[0]):
# scale it back to keep the orignal size
masks = cv2.resize(masks.astype('uint16'), target_size, interpolation=cv2.INTER_NEAREST).astype('uint16')
#flows = cv2.resize(flows.astype('float32'), target_size).astype('uint8')
#crand = .2 + .8 * np.random.rand(np.max(masks.flatten()).astype('int')+1,).astype('float32')
#crand[0] = 0
#overlay = Image.fromarray(overlay)
#flows = Image.fromarray(flows)
#masks = Image.fromarray(255. * crand[masks])
pil_masks = Image.fromarray(masks.astype('int32'))
pil_masks.save("masks.tiff")
outpix.save("outlines.png")
b1 = gr.DownloadButton(visible=True, value = "masks.tiff")
b2 = gr.DownloadButton(visible=True, value = "outlines.png")
return outpix, overlay, flows, b1, b2
# Gradio Interface
#iface = gr.Interface(
# fn=cellpose_segment,
# inputs="image",
# outputs=["image", "image", "image", "image"],
# title="cellpose segmentation",
# description="upload an image, then cellpose will segment it at a max size of 400x400 (for full functionality, 'pip install cellpose' locally)"
#)
def download_function():
b1 = gr.DownloadButton("Download masks as TIFF", visible=False)
b2 = gr.DownloadButton("Download outline image as PNG", visible=False)
return b1, b2
with gr.Blocks(title = "Hello",
css=".gradio-container {background:purple;}") as demo:
with gr.Row():
with gr.Column(scale=2):
gr.HTML("""<div style="font-family:'Times New Roman', 'Serif'; font-size:16pt; font-weight:bold; text-align:center; color:white;">Cellpose-SAM for cellular segmentation</div>""")
gr.HTML("""<h4 style="color:white;">You may need to refresh/login for 5 minutes of free GPU compute time/day. </h4>""")
gr.HTML("""<h4 style="color:white;">"pip install cellpose" for full functionality. </h4>""")
input_image = gr.Image(label = "Input image", type = "numpy")
send_btn = gr.Button("Run Cellpose-SAM")
with gr.Row():
down_btn = gr.DownloadButton("Download masks (TIFF)", visible=False)
down_btn2 = gr.DownloadButton("Download outlines (PNG)", visible=False)
gr.HTML("""<li><a href="https://github.com/MouseLand/cellpose" target="_blank">github page for cellpose</a>""")
gr.HTML("""<li><a style="color:white;" href="https://github.com/MouseLand/cellpose" target="_blank">Cellpose-SAM paper</a>""")
with gr.Column(scale=2):
img_outlines = gr.Image(label = "Outlines", type = "pil")
img_overlay = gr.Image(label = "Overlay", type = "numpy")
flows = gr.Image(label = "Cellpose flows", type = "numpy")
#masks = gr.Image(label = "Output image", type = "numpy")
send_btn.click(fn=cellpose_segment, inputs=[input_image], outputs=[img_outlines, img_overlay, flows, down_btn, down_btn2])
#down_btn.click(download_function, None, [down_btn, down_btn2])
demo.launch()
|