Spaces:
Runtime error
Runtime error
| import torch | |
| from torch import nn | |
| from torch.nn import Conv1d, Conv2d | |
| from torch.nn import functional as F | |
| from torch.nn.utils import spectral_norm, weight_norm | |
| import modules.attentions as attentions | |
| import modules.commons as commons | |
| import modules.modules as modules | |
| import utils | |
| from modules.commons import get_padding | |
| from utils import f0_to_coarse | |
| from vdecoder.hifigan.models import Generator | |
| class ResidualCouplingBlock(nn.Module): | |
| def __init__(self, | |
| channels, | |
| hidden_channels, | |
| kernel_size, | |
| dilation_rate, | |
| n_layers, | |
| n_flows=4, | |
| gin_channels=0): | |
| super().__init__() | |
| self.channels = channels | |
| self.hidden_channels = hidden_channels | |
| self.kernel_size = kernel_size | |
| self.dilation_rate = dilation_rate | |
| self.n_layers = n_layers | |
| self.n_flows = n_flows | |
| self.gin_channels = gin_channels | |
| self.flows = nn.ModuleList() | |
| for i in range(n_flows): | |
| self.flows.append( | |
| modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, | |
| gin_channels=gin_channels, mean_only=True)) | |
| self.flows.append(modules.Flip()) | |
| def forward(self, x, x_mask, g=None, reverse=False): | |
| if not reverse: | |
| for flow in self.flows: | |
| x, _ = flow(x, x_mask, g=g, reverse=reverse) | |
| else: | |
| for flow in reversed(self.flows): | |
| x = flow(x, x_mask, g=g, reverse=reverse) | |
| return x | |
| class Encoder(nn.Module): | |
| def __init__(self, | |
| in_channels, | |
| out_channels, | |
| hidden_channels, | |
| kernel_size, | |
| dilation_rate, | |
| n_layers, | |
| gin_channels=0): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| self.out_channels = out_channels | |
| self.hidden_channels = hidden_channels | |
| self.kernel_size = kernel_size | |
| self.dilation_rate = dilation_rate | |
| self.n_layers = n_layers | |
| self.gin_channels = gin_channels | |
| self.pre = nn.Conv1d(in_channels, hidden_channels, 1) | |
| self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels) | |
| self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) | |
| def forward(self, x, x_lengths, g=None): | |
| # print(x.shape,x_lengths.shape) | |
| x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) | |
| x = self.pre(x) * x_mask | |
| x = self.enc(x, x_mask, g=g) | |
| stats = self.proj(x) * x_mask | |
| m, logs = torch.split(stats, self.out_channels, dim=1) | |
| z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask | |
| return z, m, logs, x_mask | |
| class TextEncoder(nn.Module): | |
| def __init__(self, | |
| out_channels, | |
| hidden_channels, | |
| kernel_size, | |
| n_layers, | |
| gin_channels=0, | |
| filter_channels=None, | |
| n_heads=None, | |
| p_dropout=None): | |
| super().__init__() | |
| self.out_channels = out_channels | |
| self.hidden_channels = hidden_channels | |
| self.kernel_size = kernel_size | |
| self.n_layers = n_layers | |
| self.gin_channels = gin_channels | |
| self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) | |
| self.f0_emb = nn.Embedding(256, hidden_channels) | |
| self.enc_ = attentions.Encoder( | |
| hidden_channels, | |
| filter_channels, | |
| n_heads, | |
| n_layers, | |
| kernel_size, | |
| p_dropout) | |
| def forward(self, x, x_mask, f0=None, z=None): | |
| x = x + self.f0_emb(f0).transpose(1, 2) | |
| x = self.enc_(x * x_mask, x_mask) | |
| stats = self.proj(x) * x_mask | |
| m, logs = torch.split(stats, self.out_channels, dim=1) | |
| z = (m + z * torch.exp(logs)) * x_mask | |
| return z, m, logs, x_mask | |
| class DiscriminatorP(torch.nn.Module): | |
| def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): | |
| super(DiscriminatorP, self).__init__() | |
| self.period = period | |
| self.use_spectral_norm = use_spectral_norm | |
| norm_f = weight_norm if use_spectral_norm is False else spectral_norm | |
| self.convs = nn.ModuleList([ | |
| norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), | |
| norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), | |
| norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), | |
| norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), | |
| norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))), | |
| ]) | |
| self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) | |
| def forward(self, x): | |
| fmap = [] | |
| # 1d to 2d | |
| b, c, t = x.shape | |
| if t % self.period != 0: # pad first | |
| n_pad = self.period - (t % self.period) | |
| x = F.pad(x, (0, n_pad), "reflect") | |
| t = t + n_pad | |
| x = x.view(b, c, t // self.period, self.period) | |
| for l in self.convs: | |
| x = l(x) | |
| x = F.leaky_relu(x, modules.LRELU_SLOPE) | |
| fmap.append(x) | |
| x = self.conv_post(x) | |
| fmap.append(x) | |
| x = torch.flatten(x, 1, -1) | |
| return x, fmap | |
| class DiscriminatorS(torch.nn.Module): | |
| def __init__(self, use_spectral_norm=False): | |
| super(DiscriminatorS, self).__init__() | |
| norm_f = weight_norm if use_spectral_norm is False else spectral_norm | |
| self.convs = nn.ModuleList([ | |
| norm_f(Conv1d(1, 16, 15, 1, padding=7)), | |
| norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)), | |
| norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)), | |
| norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)), | |
| norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), | |
| norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), | |
| ]) | |
| self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) | |
| def forward(self, x): | |
| fmap = [] | |
| for l in self.convs: | |
| x = l(x) | |
| x = F.leaky_relu(x, modules.LRELU_SLOPE) | |
| fmap.append(x) | |
| x = self.conv_post(x) | |
| fmap.append(x) | |
| x = torch.flatten(x, 1, -1) | |
| return x, fmap | |
| class F0Decoder(nn.Module): | |
| def __init__(self, | |
| out_channels, | |
| hidden_channels, | |
| filter_channels, | |
| n_heads, | |
| n_layers, | |
| kernel_size, | |
| p_dropout, | |
| spk_channels=0): | |
| super().__init__() | |
| self.out_channels = out_channels | |
| self.hidden_channels = hidden_channels | |
| self.filter_channels = filter_channels | |
| self.n_heads = n_heads | |
| self.n_layers = n_layers | |
| self.kernel_size = kernel_size | |
| self.p_dropout = p_dropout | |
| self.spk_channels = spk_channels | |
| self.prenet = nn.Conv1d(hidden_channels, hidden_channels, 3, padding=1) | |
| self.decoder = attentions.FFT( | |
| hidden_channels, | |
| filter_channels, | |
| n_heads, | |
| n_layers, | |
| kernel_size, | |
| p_dropout) | |
| self.proj = nn.Conv1d(hidden_channels, out_channels, 1) | |
| self.f0_prenet = nn.Conv1d(1, hidden_channels, 3, padding=1) | |
| self.cond = nn.Conv1d(spk_channels, hidden_channels, 1) | |
| def forward(self, x, norm_f0, x_mask, spk_emb=None): | |
| x = torch.detach(x) | |
| if spk_emb is not None: | |
| x = x + self.cond(spk_emb) | |
| x += self.f0_prenet(norm_f0) | |
| x = self.prenet(x) * x_mask | |
| x = self.decoder(x * x_mask, x_mask) | |
| x = self.proj(x) * x_mask | |
| return x | |
| class SynthesizerTrn(nn.Module): | |
| """ | |
| Synthesizer for Training | |
| """ | |
| def __init__(self, | |
| spec_channels, | |
| segment_size, | |
| inter_channels, | |
| hidden_channels, | |
| filter_channels, | |
| n_heads, | |
| n_layers, | |
| kernel_size, | |
| p_dropout, | |
| resblock, | |
| resblock_kernel_sizes, | |
| resblock_dilation_sizes, | |
| upsample_rates, | |
| upsample_initial_channel, | |
| upsample_kernel_sizes, | |
| gin_channels, | |
| ssl_dim, | |
| n_speakers, | |
| sampling_rate=44100, | |
| **kwargs): | |
| super().__init__() | |
| self.spec_channels = spec_channels | |
| self.inter_channels = inter_channels | |
| self.hidden_channels = hidden_channels | |
| self.filter_channels = filter_channels | |
| self.n_heads = n_heads | |
| self.n_layers = n_layers | |
| self.kernel_size = kernel_size | |
| self.p_dropout = p_dropout | |
| self.resblock = resblock | |
| self.resblock_kernel_sizes = resblock_kernel_sizes | |
| self.resblock_dilation_sizes = resblock_dilation_sizes | |
| self.upsample_rates = upsample_rates | |
| self.upsample_initial_channel = upsample_initial_channel | |
| self.upsample_kernel_sizes = upsample_kernel_sizes | |
| self.segment_size = segment_size | |
| self.gin_channels = gin_channels | |
| self.ssl_dim = ssl_dim | |
| self.emb_g = nn.Embedding(n_speakers, gin_channels) | |
| self.pre = nn.Conv1d(ssl_dim, hidden_channels, kernel_size=5, padding=2) | |
| self.enc_p = TextEncoder( | |
| inter_channels, | |
| hidden_channels, | |
| filter_channels=filter_channels, | |
| n_heads=n_heads, | |
| n_layers=n_layers, | |
| kernel_size=kernel_size, | |
| p_dropout=p_dropout | |
| ) | |
| hps = { | |
| "sampling_rate": sampling_rate, | |
| "inter_channels": inter_channels, | |
| "resblock": resblock, | |
| "resblock_kernel_sizes": resblock_kernel_sizes, | |
| "resblock_dilation_sizes": resblock_dilation_sizes, | |
| "upsample_rates": upsample_rates, | |
| "upsample_initial_channel": upsample_initial_channel, | |
| "upsample_kernel_sizes": upsample_kernel_sizes, | |
| "gin_channels": gin_channels, | |
| } | |
| self.dec = Generator(h=hps) | |
| self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels) | |
| self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels) | |
| self.f0_decoder = F0Decoder( | |
| 1, | |
| hidden_channels, | |
| filter_channels, | |
| n_heads, | |
| n_layers, | |
| kernel_size, | |
| p_dropout, | |
| spk_channels=gin_channels | |
| ) | |
| self.emb_uv = nn.Embedding(2, hidden_channels) | |
| self.predict_f0 = False | |
| def forward(self, c, f0, mel2ph, uv, noise=None, g=None): | |
| decoder_inp = F.pad(c, [0, 0, 1, 0]) | |
| mel2ph_ = mel2ph.unsqueeze(2).repeat([1, 1, c.shape[-1]]) | |
| c = torch.gather(decoder_inp, 1, mel2ph_).transpose(1, 2) # [B, T, H] | |
| c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device) | |
| g = g.unsqueeze(0) | |
| g = self.emb_g(g).transpose(1, 2) | |
| x_mask = torch.unsqueeze(commons.sequence_mask(c_lengths, c.size(2)), 1).to(c.dtype) | |
| x = self.pre(c) * x_mask + self.emb_uv(uv.long()).transpose(1, 2) | |
| if self.predict_f0: | |
| lf0 = 2595. * torch.log10(1. + f0.unsqueeze(1) / 700.) / 500 | |
| norm_lf0 = utils.normalize_f0(lf0, x_mask, uv, random_scale=False) | |
| pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g) | |
| f0 = (700 * (torch.pow(10, pred_lf0 * 500 / 2595) - 1)).squeeze(1) | |
| z_p, m_p, logs_p, c_mask = self.enc_p(x, x_mask, f0=f0_to_coarse(f0), z=noise) | |
| z = self.flow(z_p, c_mask, g=g, reverse=True) | |
| o = self.dec(z * c_mask, g=g, f0=f0) | |
| return o | |