Spaces:
Running
Running
| import copy | |
| import json | |
| from datetime import datetime, timedelta | |
| import pandas as pd | |
| import requests | |
| import streamlit as st | |
| from constants import ( | |
| DEFAULT_EVALUATION_CRITERIA, | |
| DEFAULT_EVALUATION_MODEL, | |
| MODEL_OPTIONS, | |
| ) | |
| from pydantic import BaseModel, ConfigDict | |
| from any_agent import AgentFramework | |
| class UserInputs(BaseModel): | |
| model_config = ConfigDict(extra="forbid") | |
| model_id: str | |
| location: str | |
| max_driving_hours: int | |
| date: datetime | |
| framework: str | |
| evaluation_model: str | |
| evaluation_criteria: list[dict[str, str]] | |
| run_evaluation: bool | |
| def get_area(area_name: str) -> dict: | |
| """Get the area from Nominatim. | |
| Uses the [Nominatim API](https://nominatim.org/release-docs/develop/api/Search/). | |
| Args: | |
| area_name (str): The name of the area. | |
| Returns: | |
| dict: The area found. | |
| """ | |
| response = requests.get( | |
| f"https://nominatim.openstreetmap.org/search?q={area_name}&format=jsonv2", | |
| headers={"User-Agent": "Mozilla/5.0"}, | |
| timeout=5, | |
| ) | |
| response.raise_for_status() | |
| return json.loads(response.content.decode()) | |
| def get_user_inputs() -> UserInputs: | |
| default_val = "Los Angeles California, US" | |
| location = st.text_input("Enter a location", value=default_val) | |
| if location: | |
| location_check = get_area(location) | |
| if not location_check: | |
| st.error("β Invalid location") | |
| max_driving_hours = st.number_input( | |
| "Enter the maximum driving hours", min_value=1, value=2 | |
| ) | |
| col_date, col_time = st.columns([2, 1]) | |
| with col_date: | |
| date = st.date_input( | |
| "Select a date in the future", value=datetime.now() + timedelta(days=1) | |
| ) | |
| with col_time: | |
| time = st.selectbox( | |
| "Select a time", | |
| [datetime.strptime(f"{i:02d}:00", "%H:%M").time() for i in range(24)], | |
| index=9, | |
| ) | |
| date = datetime.combine(date, time) | |
| supported_frameworks = [framework for framework in AgentFramework] | |
| framework = st.selectbox( | |
| "Select the agent framework to use", | |
| supported_frameworks, | |
| index=2, | |
| format_func=lambda x: x.name, | |
| ) | |
| model_id = st.selectbox( | |
| "Select the model to use", | |
| MODEL_OPTIONS, | |
| index=1, | |
| format_func=lambda x: "/".join(x.split("/")[-3:]), | |
| ) | |
| with st.expander("Custom Evaluation"): | |
| evaluation_model_id = st.selectbox( | |
| "Select the model to use for LLM-as-a-Judge evaluation", | |
| MODEL_OPTIONS, | |
| index=2, | |
| format_func=lambda x: "/".join(x.split("/")[-3:]), | |
| ) | |
| evaluation_criteria = copy.deepcopy(DEFAULT_EVALUATION_CRITERIA) | |
| criteria_df = pd.DataFrame(evaluation_criteria) | |
| criteria_df = st.data_editor( | |
| criteria_df, | |
| column_config={ | |
| "criteria": st.column_config.TextColumn(label="Criteria"), | |
| }, | |
| hide_index=True, | |
| num_rows="dynamic", | |
| ) | |
| new_criteria = [] | |
| if len(criteria_df) > 20: | |
| st.error("You can only add up to 20 criteria for the purpose of this demo.") | |
| criteria_df = criteria_df[:20] | |
| for _, row in criteria_df.iterrows(): | |
| if row["criteria"] == "": | |
| continue | |
| try: | |
| if len(row["criteria"].split(" ")) > 100: | |
| msg = "Criteria is too long" | |
| raise ValueError(msg) | |
| new_criteria.append({"criteria": row["criteria"]}) | |
| except Exception as e: | |
| st.error(f"Error creating criterion: {e}") | |
| return UserInputs( | |
| model_id=model_id, | |
| location=location, | |
| max_driving_hours=max_driving_hours, | |
| date=date, | |
| framework=framework, | |
| evaluation_model=evaluation_model_id, | |
| evaluation_criteria=new_criteria, | |
| run_evaluation=st.checkbox("Run Evaluation", value=True), | |
| ) | |