Spaces:
Runtime error
Runtime error
Uploading Trashify box detection model app.py
Browse files
README.md
CHANGED
|
@@ -4,10 +4,17 @@ emoji: 🗑️
|
|
| 4 |
colorFrom: purple
|
| 5 |
colorTo: blue
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 4.40.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
| 11 |
---
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
colorFrom: purple
|
| 5 |
colorTo: blue
|
| 6 |
sdk: gradio
|
|
|
|
| 7 |
app_file: app.py
|
| 8 |
pinned: false
|
| 9 |
license: apache-2.0
|
| 10 |
---
|
| 11 |
|
| 12 |
+
# 🚮 Trashify Object Detector
|
| 13 |
+
|
| 14 |
+
Object detection demo to detect `trash`, `bin`, `hand`, `trash_arm`, `not_trash`, `not_bin`, `not_hand`.
|
| 15 |
+
|
| 16 |
+
Used as example for encouraging people to cleanup their local area.
|
| 17 |
+
|
| 18 |
+
If `trash`, `hand`, `bin` all detected = +1 point.
|
| 19 |
+
|
| 20 |
+
TK - finish the README.md + update with links to materials
|
app.py
CHANGED
|
@@ -107,7 +107,7 @@ def predict_on_image(image, conf_threshold):
|
|
| 107 |
for item in target_items:
|
| 108 |
if item not in class_name_text_labels:
|
| 109 |
missing_items.append(item)
|
| 110 |
-
return_string = f"Detected the following items: {class_name_text_labels}. But missing the following in order to get +1: {missing_items}. If this is an error, try altering the confidence threshold."
|
| 111 |
|
| 112 |
# If all 3 trash, bin, hand occur = + 1
|
| 113 |
if all_in_list(list_a=target_items, list_b=class_name_text_labels):
|
|
|
|
| 107 |
for item in target_items:
|
| 108 |
if item not in class_name_text_labels:
|
| 109 |
missing_items.append(item)
|
| 110 |
+
return_string = f"Detected the following items: {class_name_text_labels}. But missing the following in order to get +1: {missing_items}. If this is an error, try another image or altering the confidence threshold. Otherwise, the model may need to be updated with better data."
|
| 111 |
|
| 112 |
# If all 3 trash, bin, hand occur = + 1
|
| 113 |
if all_in_list(list_a=target_items, list_b=class_name_text_labels):
|