Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import torch | |
| from PIL import Image, ImageDraw, ImageFont | |
| from transformers import AutoImageProcessor | |
| from transformers import AutoModelForObjectDetection | |
| # Note: Can load from Hugging Face or can load from local. | |
| # You will have to replace {mrdbourke} for your own username if the model is on your Hugging Face account. | |
| model_save_path = "mrdbourke/detr_finetuned_trashify_box_detector_with_data_aug" | |
| # Load the model and preprocessor | |
| image_processor = AutoImageProcessor.from_pretrained(model_save_path) | |
| model = AutoModelForObjectDetection.from_pretrained(model_save_path) | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model = model.to(device) | |
| # Get the id2label dictionary from the model | |
| id2label = model.config.id2label | |
| # Set up a colour dictionary for plotting boxes with different colours | |
| color_dict = { | |
| "bin": "green", | |
| "trash": "blue", | |
| "hand": "purple", | |
| "trash_arm": "yellow", | |
| "not_trash": "red", | |
| "not_bin": "red", | |
| "not_hand": "red", | |
| } | |
| # Create helper functions for seeing if items from one list are in another | |
| def any_in_list(list_a, list_b): | |
| "Returns True if any item from list_a is in list_b, otherwise False." | |
| return any(item in list_b for item in list_a) | |
| def all_in_list(list_a, list_b): | |
| "Returns True if all items from list_a are in list_b, otherwise False." | |
| return all(item in list_b for item in list_a) | |
| def predict_on_image(image, conf_threshold): | |
| with torch.no_grad(): | |
| inputs = image_processor(images=[image], return_tensors="pt") | |
| outputs = model(**inputs.to(device)) | |
| target_sizes = torch.tensor([[image.size[1], image.size[0]]]) # height, width | |
| results = image_processor.post_process_object_detection(outputs, | |
| threshold=conf_threshold, | |
| target_sizes=target_sizes)[0] | |
| # Return all items in results to CPU | |
| for key, value in results.items(): | |
| try: | |
| results[key] = value.item().cpu() # can't get scalar as .item() so add try/except block | |
| except: | |
| results[key] = value.cpu() | |
| # Can return results as plotted on a PIL image (then display the image) | |
| draw = ImageDraw.Draw(image) | |
| # Get a font from ImageFont | |
| font = ImageFont.load_default(size=20) | |
| # Get class names as text for print out | |
| class_name_text_labels = [] | |
| for box, score, label in zip(results["boxes"], results["scores"], results["labels"]): | |
| # Create coordinates | |
| x, y, x2, y2 = tuple(box.tolist()) | |
| # Get label_name | |
| label_name = id2label[label.item()] | |
| targ_color = color_dict[label_name] | |
| class_name_text_labels.append(label_name) | |
| # Draw the rectangle | |
| draw.rectangle(xy=(x, y, x2, y2), | |
| outline=targ_color, | |
| width=3) | |
| # Create a text string to display | |
| text_string_to_show = f"{label_name} ({round(score.item(), 3)})" | |
| # Draw the text on the image | |
| draw.text(xy=(x, y), | |
| text=text_string_to_show, | |
| fill="white", | |
| font=font) | |
| # Remove the draw each time | |
| del draw | |
| # Setup blank string to print out | |
| return_string = "" | |
| # Setup list of target items to discover | |
| target_items = ["trash", "bin", "hand"] | |
| # If no items detected or trash, bin, hand not in list, return notification | |
| if (len(class_name_text_labels) == 0) or not (any_in_list(list_a=target_items, list_b=class_name_text_labels)): | |
| return_string = f"No trash, bin or hand detected at confidence threshold {conf_threshold}. Try another image or lowering the confidence threshold." | |
| return image, return_string | |
| # If there are some missing, print the ones which are missing | |
| elif not all_in_list(list_a=target_items, list_b=class_name_text_labels): | |
| missing_items = [] | |
| for item in target_items: | |
| if item not in class_name_text_labels: | |
| missing_items.append(item) | |
| return_string = f"Detected the following items: {class_name_text_labels}. But missing the following in order to get +1: {missing_items}. If this is an error, try another image or altering the confidence threshold. Otherwise, the model may need to be updated with better data." | |
| # If all 3 trash, bin, hand occur = + 1 | |
| if all_in_list(list_a=target_items, list_b=class_name_text_labels): | |
| return_string = f"+1! Found the following items: {class_name_text_labels}, thank you for cleaning up the area!" | |
| print(return_string) | |
| return image, return_string | |
| # Create the interface | |
| demo = gr.Interface( | |
| fn=predict_on_image, | |
| inputs=[ | |
| gr.Image(type="pil", label="Target Image"), | |
| gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence Threshold") | |
| ], | |
| outputs=[ | |
| gr.Image(type="pil", label="Image Output"), | |
| gr.Text(label="Text Output") | |
| ], | |
| title="🚮 Trashify Object Detection Demo V2", | |
| description="""Help clean up your local area! Upload an image and get +1 if there is all of the following items detected: trash, bin, hand. | |
| The [model](https://huggingface.co/mrdbourke/detr_finetuned_trashify_box_detector_with_data_aug) in V2 has been trained with data augmentation preprocessing (color jitter, horizontal flipping) to improve robustness. | |
| """, | |
| # Examples come in the form of a list of lists, where each inner list contains elements to prefill the `inputs` parameter with | |
| examples=[ | |
| ["examples/trashify_example_1.jpeg", 0.25], | |
| ["examples/trashify_example_2.jpeg", 0.25], | |
| ["examples/trashify_example_3.jpeg", 0.25] | |
| ], | |
| cache_examples=True | |
| ) | |
| # Launch the demo | |
| demo.launch() | |