Spaces:
Sleeping
Sleeping
| from transformers import pipeline | |
| import torch | |
| from IPython.display import Audio | |
| device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
| classifier = pipeline( | |
| "audio-classification", model="MIT/ast-finetuned-speech-commands-v2", device=device | |
| ) | |
| from transformers.pipelines.audio_utils import ffmpeg_microphone_live | |
| print(classifier.model.config.id2label) | |
| def launch_fn( | |
| wake_word="marvin", | |
| prob_threshold=0.5, | |
| chunk_length_s=2.0, | |
| stream_chunk_s=0.25, | |
| debug=False, | |
| ): | |
| if wake_word not in classifier.model.config.label2id.keys(): | |
| raise ValueError( | |
| f"Wake word {wake_word} not in set of valid class labels, pick a wake word in the set {classifier.model.config.label2id.keys()}." | |
| ) | |
| sampling_rate = classifier.feature_extractor.sampling_rate | |
| mic = ffmpeg_microphone_live( | |
| sampling_rate=sampling_rate, | |
| chunk_length_s=chunk_length_s, | |
| stream_chunk_s=stream_chunk_s, | |
| ) | |
| print("Listening for wake word...") | |
| for prediction in classifier(mic): | |
| prediction = prediction[0] | |
| if debug: | |
| print(prediction) | |
| if prediction["label"] == wake_word: | |
| if prediction["score"] > prob_threshold: | |
| return True | |
| # launch_fn(debug=True) | |
| transcriber = pipeline( | |
| "automatic-speech-recognition", model="openai/whisper-base.en", device=device | |
| ) | |
| import sys | |
| def transcribe(chunk_length_s=5.0, stream_chunk_s=1.0): | |
| sampling_rate = transcriber.feature_extractor.sampling_rate | |
| mic = ffmpeg_microphone_live( | |
| sampling_rate=sampling_rate, | |
| chunk_length_s=chunk_length_s, | |
| stream_chunk_s=stream_chunk_s, | |
| ) | |
| print("Start speaking...") | |
| for item in transcriber(mic, generate_kwargs={"max_new_tokens": 128}): | |
| sys.stdout.write("\033[K") | |
| print(item["text"], end="\r") | |
| if not item["partial"][0]: | |
| break | |
| return item["text"] | |
| from huggingface_hub import HfFolder | |
| import requests | |
| def query(text, model_id="tiiuae/falcon-7b-instruct"): | |
| api_url = f"https://api-inference.huggingface.co/models/{model_id}" | |
| headers = {"Authorization": f"Bearer {HfFolder().get_token()}"} | |
| payload = {"inputs": text} | |
| print(f"Querying...: {text}") | |
| response = requests.post(api_url, headers=headers, json=payload) | |
| return response.json()[0]["generated_text"][len(text) + 1 :] | |
| from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan | |
| processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") | |
| model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device) | |
| vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device) | |
| from datasets import load_dataset | |
| embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") | |
| speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) | |
| def synthesise(text): | |
| inputs = processor(text=text, return_tensors="pt") | |
| speech = model.generate_speech( | |
| inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder | |
| ) | |
| return speech.cpu() | |
| # launch_fn() | |
| # print("hablá") | |
| # transcription = transcribe() | |
| # response = query(transcription) | |
| # audio = synthesise(response) | |
| audio = synthesise( | |
| "Hugging Face is a company that provides natural language processing and machine learning tools for developers." | |
| ) | |
| # import gradio as gr | |
| # with gr.Blocks() as demo: | |
| # boton = gr.Button("hablar") | |
| # audio = gr.Audio() | |
| # micro = gr.Microphone() | |
| # boton.click(start,micro,audio) | |