Spaces:
Sleeping
Sleeping
| import matplotlib.pyplot as plt | |
| import matplotlib.patches as patches | |
| from matplotlib.patches import Patch | |
| import io | |
| from PIL import Image, ImageDraw58655 | |
| import numpy as np | |
| import csv | |
| import pandas as pd | |
| from torchvision import transforms | |
| from transformers import AutoModelForObjectDetection | |
| import torch | |
| import easyocr | |
| import gradio as gr | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| def process_pdf(): | |
| print('process_pdf') | |
| # cropped_table = detect_and_crop_table(image) | |
| # image, cells = recognize_table(cropped_table) | |
| # cell_coordinates = get_cell_coordinates_by_row(cells) | |
| # df, data = apply_ocr(cell_coordinates, image) | |
| # return image, df, data | |
| return [], [], [] | |
| title = "Sheriff's Demo: Table Detection & Recognition with Table Transformer (TATR)." | |
| description = """A demo by M Sheriff for table extraction with the Table Transformer. | |
| First, table detection is performed on the input image using https://huggingface.co/microsoft/table-transformer-detection, | |
| after which the detected table is extracted and https://huggingface.co/microsoft/table-transformer-structure-recognition-v1.1-all recognizes the | |
| individual rows, columns and cells. OCR is then performed per cell, row by row.""" | |
| examples = [['image.png'], ['mistral_paper.png']] | |
| app = gr.Interface(fn=process_pdf, | |
| inputs=gr.Image(type="pil"), | |
| outputs=[gr.Image(type="pil", label="Detected table"), gr.Dataframe(label="Table as CSV"), gr.JSON(label="Data as JSON")], | |
| title=title, | |
| description=description, | |
| examples=examples) | |
| app.queue() | |
| app.launch(debug=True) | |