File size: 3,733 Bytes
08a352f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from abc import ABC, abstractmethod
from typing import List, Dict, Any, Optional
from gradio_client import Client
import logging
import os
import time

class VectorStoreInterface(ABC):
    """Abstract interface for different vector store implementations."""
    
    @abstractmethod
    def search(self, query: str, top_k: int, **kwargs) -> List[Dict[str, Any]]:
        """Search for similar documents."""
        pass

class HuggingFaceSpacesVectorStore(VectorStoreInterface):
    """Vector store implementation for Hugging Face Spaces with MCP endpoints."""
    
    def __init__(self, space_url: str, collection_name: str, hf_token: Optional[str] = None):
        token = os.getenv("HF_TOKEN")
        repo_id = space_url
            
        logging.info(f"Connecting to Hugging Face Space: {repo_id}")
        
        if token:
            self.client = Client(repo_id, hf_token=token)
        else:
            self.client = Client(repo_id)
            
        self.collection_name = collection_name
        
    def search(self, query: str, top_k: int, **kwargs) -> List[Dict[str, Any]]:
        """Search using Hugging Face Spaces MCP API."""
        try:
            # Use the /search_text endpoint as documented in the API
            result = self.client.predict(
                query=query,
                collection_name=self.collection_name,
                model_name=kwargs.get('model_name'),
                top_k=top_k,
                api_name="/search_text"
            )
            
            logging.info(f"Successfully retrieved {len(result) if result else 0} documents")
            return result
            
        except Exception as e:
            logging.error(f"Error searching Hugging Face Spaces: {str(e)}")
            raise e

# class QdrantVectorStore(VectorStoreInterface):
#     """Vector store implementation for direct Qdrant connection."""
#     # needs to be generalized for other vector stores (or add a new class for each vector store)
#     def __init__(self, host: str, port: int, collection_name: str, api_key: Optional[str] = None):
#         from qdrant_client import QdrantClient
#         from langchain_community.vectorstores import Qdrant
        
#         self.client = QdrantClient(
#             host=host,
#             port=port,
#             api_key=api_key
#         )
#         self.collection_name = collection_name
#          # Embedding model not implemented 
        
#     def search(self, query: str, top_k: int, **kwargs) -> List[Dict[str, Any]]:
#         """Search using direct Qdrant connection."""
#         # Embedding model not implemented 
#         raise NotImplementedError("Direct Qdrant search needs embedding model configuration")

def create_vectorstore(config: Any) -> VectorStoreInterface:
    """Factory function to create appropriate vector store based on configuration."""
    vectorstore_type = config.get("vectorstore", "TYPE")
    
    if vectorstore_type.lower() == "huggingface_spaces":
        space_url = config.get("vectorstore", "SPACE_URL")
        collection_name = config.get("vectorstore", "COLLECTION_NAME")
        hf_token = config.get("vectorstore", "HF_TOKEN", fallback=None)
        return HuggingFaceSpacesVectorStore(space_url, collection_name, hf_token)
    
    elif vectorstore_type.lower() == "qdrant":
        host = config.get("vectorstore", "HOST")
        port = int(config.get("vectorstore", "PORT"))
        collection_name = config.get("vectorstore", "COLLECTION_NAME")
        api_key = config.get("vectorstore", "API_KEY", fallback=None)
        return QdrantVectorStore(host, port, collection_name, api_key)
    
    else:
        raise ValueError(f"Unsupported vector store type: {vectorstore_type}")