chatfed_retriever / app /vectorstore_interface.py
mtyrrell's picture
updated for test storage module, plus prelim generalized approach to multi data source
08a352f
from abc import ABC, abstractmethod
from typing import List, Dict, Any, Optional
from gradio_client import Client
import logging
import os
import time
class VectorStoreInterface(ABC):
"""Abstract interface for different vector store implementations."""
@abstractmethod
def search(self, query: str, top_k: int, **kwargs) -> List[Dict[str, Any]]:
"""Search for similar documents."""
pass
class HuggingFaceSpacesVectorStore(VectorStoreInterface):
"""Vector store implementation for Hugging Face Spaces with MCP endpoints."""
def __init__(self, space_url: str, collection_name: str, hf_token: Optional[str] = None):
token = os.getenv("HF_TOKEN")
repo_id = space_url
logging.info(f"Connecting to Hugging Face Space: {repo_id}")
if token:
self.client = Client(repo_id, hf_token=token)
else:
self.client = Client(repo_id)
self.collection_name = collection_name
def search(self, query: str, top_k: int, **kwargs) -> List[Dict[str, Any]]:
"""Search using Hugging Face Spaces MCP API."""
try:
# Use the /search_text endpoint as documented in the API
result = self.client.predict(
query=query,
collection_name=self.collection_name,
model_name=kwargs.get('model_name'),
top_k=top_k,
api_name="/search_text"
)
logging.info(f"Successfully retrieved {len(result) if result else 0} documents")
return result
except Exception as e:
logging.error(f"Error searching Hugging Face Spaces: {str(e)}")
raise e
# class QdrantVectorStore(VectorStoreInterface):
# """Vector store implementation for direct Qdrant connection."""
# # needs to be generalized for other vector stores (or add a new class for each vector store)
# def __init__(self, host: str, port: int, collection_name: str, api_key: Optional[str] = None):
# from qdrant_client import QdrantClient
# from langchain_community.vectorstores import Qdrant
# self.client = QdrantClient(
# host=host,
# port=port,
# api_key=api_key
# )
# self.collection_name = collection_name
# # Embedding model not implemented
# def search(self, query: str, top_k: int, **kwargs) -> List[Dict[str, Any]]:
# """Search using direct Qdrant connection."""
# # Embedding model not implemented
# raise NotImplementedError("Direct Qdrant search needs embedding model configuration")
def create_vectorstore(config: Any) -> VectorStoreInterface:
"""Factory function to create appropriate vector store based on configuration."""
vectorstore_type = config.get("vectorstore", "TYPE")
if vectorstore_type.lower() == "huggingface_spaces":
space_url = config.get("vectorstore", "SPACE_URL")
collection_name = config.get("vectorstore", "COLLECTION_NAME")
hf_token = config.get("vectorstore", "HF_TOKEN", fallback=None)
return HuggingFaceSpacesVectorStore(space_url, collection_name, hf_token)
elif vectorstore_type.lower() == "qdrant":
host = config.get("vectorstore", "HOST")
port = int(config.get("vectorstore", "PORT"))
collection_name = config.get("vectorstore", "COLLECTION_NAME")
api_key = config.get("vectorstore", "API_KEY", fallback=None)
return QdrantVectorStore(host, port, collection_name, api_key)
else:
raise ValueError(f"Unsupported vector store type: {vectorstore_type}")